missense mutations

  • 文章类型: Journal Article
    ABCA4是一种ATP结合盒(ABC)转运蛋白,可通过促进N-视黄亚烷基磷脂酰乙醇胺跨视杆和视锥感光细胞膜的转运来防止有毒的类视黄醇化合物的积聚。ABCA4中超过1500个错义突变,许多在核苷酸结合域(NBD)中,与Stargardt病(STGD1)有遗传联系。这里,我们通过低温电子显微镜显示,ABCA4在AMP-PNP结合后从开放的向外构象转化为封闭构象。结构信息和生化研究用于进一步定义NBD在ABCA4功能特性中的作用以及突变导致活性丧失的机制。我们表明,ABCA4的功能活性需要两个NBD中的ATPase活性。WalkerA天冬酰胺残基的突变导致底物激活的ATPase活性严重降低,这是由于与相对NBD的D环内残基的极性相互作用丧失。包括R1108C在内的其他NBD残基中的疾病突变的结构基础,R2077W,R2107H和L2027F对ABCA4的构造和功效影响停止了描写。总的来说,我们的研究为ABCA4的结构和功能以及STGD1的潜在机制提供了见解.
    ABCA4 is an ATP-binding cassette (ABC) transporter that prevents the buildup of toxic retinoid compounds by facilitating the transport of N-retinylidene-phosphatidylethanolamine across membranes of rod and cone photoreceptor cells. Over 1500 missense mutations in ABCA4, many in the nucleotide-binding domains (NBDs), have been genetically linked to Stargardt disease. Here, we show by cryo-EM that ABCA4 is converted from an open outward conformation to a closed conformation upon the binding of adenylyl-imidodiphosphate. Structural information and biochemical studies were used to further define the role of the NBDs in the functional properties of ABCA4 and the mechanisms by which mutations lead to the loss in activity. We show that ATPase activity in both NBDs is required for the functional activity of ABCA4. Mutations in Walker A asparagine residues cause a severe reduction in substrate-activated ATPase activity due to the loss in polar interactions with residues within the D-loops of the opposing NBD. The structural basis for how disease mutations in other NBD residues, including the R1108C, R2077W, R2107H, and L2027F, affect the structure and function of ABCA4 is described. Collectively, our studies provide insight into the structure and function of ABCA4 and mechanisms underlying Stargardt disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人纤溶酶原(PLG),纤维蛋白溶解蛋白酶的酶原,纤溶酶,是一种具有两个广泛分布的显性等位基因的多态蛋白,PLG/Asp453和PLG/Asn453。约15个其他错义或非同义单核苷酸多态性(nsSNP)的PLG显示主要,但不同,世界人口的相对丰富。虽然这些相对丰富的等位基因变体的存在是公认的,它们经常被忽视或被认为是非致病性的。事实上,这些主要变异中至少有一半被归类为具有相互冲突的致病性,目前尚不清楚它们是否有助于不同的分子表型。从那些,PLG/K19E和PLG/A601T是与PLG缺陷(PD)相关的两种相对丰富的PLG变体的例子。但其致病机制尚不清楚。另一方面,据报道,大约有50种罕见和超罕见的PLG错义变体导致PD为纯合或复合杂合变体,通常导致一种叫做结膜炎的使人衰弱的疾病。PD相关nsSNP的真实丰度是未知的,因为它们在杂合携带者中仍未被检测到。然而,PD变体也可能导致其他疾病。最近,发现超罕见常染色体显性遗传PLG/K311E是C1抑制剂正常的遗传性血管性水肿(HAE)的病因.另外两个罕见的致病性PLG错义变异,PLG/R153G和PLG/V709E,似乎影响血小板功能并导致HAE,分别。在这里,检查由于与疾病相关而丰富和/或临床相关的PLG错义变体及其世界分布。在已知或可以合理假设的情况下,讨论了拟议的分子机制。
    Human plasminogen (PLG), the zymogen of the fibrinolytic protease, plasmin, is a polymorphic protein with two widely distributed codominant alleles, PLG/Asp453 and PLG/Asn453. About 15 other missense or non-synonymous single nucleotide polymorphisms (nsSNPs) of PLG show major, yet different, relative abundances in world populations. Although the existence of these relatively abundant allelic variants is generally acknowledged, they are often overlooked or assumed to be non-pathogenic. In fact, at least half of those major variants are classified as having conflicting pathogenicity, and it is unclear if they contribute to different molecular phenotypes. From those, PLG/K19E and PLG/A601T are examples of two relatively abundant PLG variants that have been associated with PLG deficiencies (PD), but their pathogenic mechanisms are unclear. On the other hand, approximately 50 rare and ultra-rare PLG missense variants have been reported to cause PD as homozygous or compound heterozygous variants, often leading to a debilitating disease known as ligneous conjunctivitis. The true abundance of PD-associated nsSNPs is unknown since they can remain undetected in heterozygous carriers. However, PD variants may also contribute to other diseases. Recently, the ultra-rare autosomal dominant PLG/K311E has been found to be causative of hereditary angioedema (HAE) with normal C1 inhibitor. Two other rare pathogenic PLG missense variants, PLG/R153G and PLG/V709E, appear to affect platelet function and lead to HAE, respectively. Herein, PLG missense variants that are abundant and/or clinically relevant due to association with disease are examined along with their world distribution. Proposed molecular mechanisms are discussed when known or can be reasonably assumed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    成纤维细胞生长因子受体2(FGFR2)基因是研究最广泛的基因之一,具有许多已知的突变与几种人类疾病有关。包括致癌的。大多数FGFR2疾病相关基因突变是错义突变,导致FGFR2蛋白和下游分子途径的组成型激活。FGFR2激酶结构域的许多三级结构在野生型和突变形式以及受体的失活和活化状态中是公开可用的。目前的文献表明分子制动抑制ATP结合A环采用活化状态。突变减轻了刹车,触发活性和非活性状态之间的变构变化。然而,现有的分析依赖于静态结构,没有考虑到内在的结构动力学。在这项研究中,我们利用FGFR2酪氨酸激酶域的实验解析结构和机器学习来捕获内在的结构动力学,将其与功能区域和疾病类型相关联,并用预测的变体结构丰富它,目前没有实验解析的结构。我们的发现证明了机器学习的结构动力学特征在揭示突变对FGFR2中(dys)功能和紊乱的影响方面的价值。
    The fibroblast growth factor receptor 2 (FGFR2) gene is one of the most extensively studied genes with many known mutations implicated in several human disorders, including oncogenic ones. Most FGFR2 disease-associated gene mutations are missense mutations that result in constitutive activation of the FGFR2 protein and downstream molecular pathways. Many tertiary structures of the FGFR2 kinase domain are publicly available in the wildtype and mutated forms and in the inactive and activated state of the receptor. The current literature suggests a molecular brake inhibiting the ATP-binding A loop from adopting the activated state. Mutations relieve this brake, triggering allosteric changes between active and inactive states. However, the existing analysis relies on static structures and fails to account for the intrinsic structural dynamics. In this study, we utilize experimentally resolved structures of the FGFR2 tyrosine kinase domain and machine learning to capture the intrinsic structural dynamics, correlate it with functional regions and disease types, and enrich it with predicted structures of variants with currently no experimentally resolved structures. Our findings demonstrate the value of machine learning-enabled characterizations of structure dynamics in revealing the impact of mutations on (dys)function and disorder in FGFR2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌萎缩侧索硬化(ALS)是一种以运动神经元进行性变性为特征的破坏性神经退行性疾病,导致呼吸衰竭和3-5年内死亡。血管生成素(ANG)的突变导致核糖核酸分解和核易位活性的丧失,有助于ALS的发病机制。这项研究的重点是调查两个未表征的ANG突变,T11S和R122H,在项目矿山财团中新确定的。使用广泛的计算分析,包括结构建模和微秒级分子动力学(MD)模拟,我们观察到T11S和R122H突变诱导的ANG的催化残基His114的构象变化。这些改变损害了核糖核酸分解活性,通过分子对接和结合自由能计算推断。吉布斯自由能景观和残留物-残留物相互作用网络分析进一步支持了我们的发现,揭示了从突变位点到His114的能量状态和变构途径。此外,我们评估了ANG核糖核酸溶解活性抑制剂NCI-65828的结合,发现当His114呈现非天然构象时,与T11S和R122H突变体的结合效力降低。这突出了His114的关键作用及其与ALS的关联。阐明经常突变的ANG突变体的物理结构和功能动力学之间的关系对于理解ALS的发病机理和开发更有效的治疗干预措施至关重要。
    Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive degeneration of motor neurons, resulting in respiratory failure and mortality within 3-5 years. Mutations in the Angiogenin (ANG) cause loss of ribonucleolytic and nuclear translocation activities, contributing to ALS pathogenesis. This study focused on investigating two uncharacterized ANG mutations, T11S and R122H, newly identified in the Project Mine consortium. Using extensive computational analysis, including structural modeling and microsecond-timescale molecular dynamics (MD) simulations, we observed conformational changes in the catalytic residue His114 of ANG induced by T11S and R122H mutations. These alterations impaired ribonucleolytic activity, as inferred through molecular docking and binding free energy calculations. Gibbs free energy landscape and residue-residue interaction network analysis further supported our findings, revealing the energetic states and allosteric pathway from the mutated site to His114. Additionally, we assessed the binding of NCI-65828, an inhibitor of ribonucleolytic activity of ANG, and found reduced effectiveness in binding to T11S and R122H mutants when His114 assumed a non-native conformation. This highlights the crucial role of His114 and its association with ALS. Elucidating the relationship between physical structure and functional dynamics of frequently mutated ANG mutants is essential for understanding ALS pathogenesis and developing more effective therapeutic interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:谷氨酸能突触功能障碍被认为是许多个体自闭症谱系障碍(ASD)和智力障碍(ID)发展的基础。然而,众所周知,鉴定导致这些个体突触功能障碍的遗传标记是非常困难的。基于基因组分析,结构建模,和功能数据,我们最近确定TRIO-RAC1通路参与ASD和ID.此外,我们在TRIO的GEF1域中发现了一个病理性从头错义突变热点。该结构域中与ASD/ID相关的错义突变会损害谷氨酸能突触功能,并可能有助于ASD/ID的发展。在TRIO的GEF1域内鉴定出突变的ASD/ID病例数量正在增加。然而,缺乏准确预测这种突变是否对蛋白质功能有害的工具。
    方法:在这里,我们部署了先进的蛋白质结构建模技术来预测TRIO的GEF1域内潜在的从头致病性和良性突变。在器官型培养的海马切片的CA1锥体神经元中产生并表达突变体TRIO-9构建体。使用双全细胞膜片钳电生理学检查了这些神经元中AMPA受体介导的突触后电流。我们还使用正交免疫共沉淀和荧光寿命成像(FLIM-FRET)实验验证了这些发现,以测定TRIO突变体过表达对TRIO-RAC1结合和HEK293/T细胞中RAC1活性的影响。
    结果:在TRIO的GEF1结构域中预测会破坏TRIO-RAC1结合或稳定性的错义突变进行了实验测试,发现极大地削弱了TRIO-9对谷氨酸能突触功能的影响。相比之下,在我们的实验测定中,TRIO-9对谷氨酸能突触功能的影响不大,预计TRIO-的GEF1结构域错义突变对TRIO-RAC1结合或稳定性影响最小。在正交试验中,我们发现大多数预测会破坏结合显示功能丧失的突变,但预测会破坏稳定性的突变并不能反映我们从神经元电生理数据中得到的结果。
    结论:我们提出了一种方法来预测TRIO的GEF1域中可能损害TRIO功能的错义突变,并在有限数量的测定中测试效果。这里使用的模型系统可能产生的限制可以在未来的研究中解决。我们的方法没有提供这些突变是否赋予ASD/ID风险或此类突变将导致ASD/ID发展的可能性的证据。
    结论:在这里,我们表明,基于结构的计算预测和实验验证的组合可以用于可靠地预测人类TRIO基因中的错义突变是否会阻碍TRIO蛋白功能并损害TRIO在谷氨酸能突触调节中的作用。随着基因组测序的普及,在病理突变的准确鉴定中使用这些工具将有助于ASD/ID的诊断.
    Glutamatergic synapse dysfunction is believed to underlie the development of Autism Spectrum Disorder (ASD) and Intellectual Disability (ID) in many individuals. However, identification of genetic markers that contribute to synaptic dysfunction in these individuals is notoriously difficult. Based on genomic analysis, structural modeling, and functional data, we recently established the involvement of the TRIO-RAC1 pathway in ASD and ID. Furthermore, we identified a pathological de novo missense mutation hotspot in TRIO\'s GEF1 domain. ASD/ID-related missense mutations within this domain compromise glutamatergic synapse function and likely contribute to the development of ASD/ID. The number of ASD/ID cases with mutations identified within TRIO\'s GEF1 domain is increasing. However, tools for accurately predicting whether such mutations are detrimental to protein function are lacking.
    Here we deployed advanced protein structural modeling techniques to predict potential de novo pathogenic and benign mutations within TRIO\'s GEF1 domain. Mutant TRIO-9 constructs were generated and expressed in CA1 pyramidal neurons of organotypic cultured hippocampal slices. AMPA receptor-mediated postsynaptic currents were examined in these neurons using dual whole-cell patch clamp electrophysiology. We also validated these findings using orthogonal co-immunoprecipitation and fluorescence lifetime imaging (FLIM-FRET) experiments to assay TRIO mutant overexpression effects on TRIO-RAC1 binding and on RAC1 activity in HEK293/T cells.
    Missense mutations in TRIO\'s GEF1 domain that were predicted to disrupt TRIO-RAC1 binding or stability were tested experimentally and found to greatly impair TRIO-9\'s influence on glutamatergic synapse function. In contrast, missense mutations in TRIO\'s GEF1 domain that were predicted to have minimal effect on TRIO-RAC1 binding or stability did not impair TRIO-9\'s influence on glutamatergic synapse function in our experimental assays. In orthogonal assays, we find most of the mutations predicted to disrupt binding display loss of function but mutants predicted to disrupt stability do not reflect our results from neuronal electrophysiological data.
    We present a method to predict missense mutations in TRIO\'s GEF1 domain that may compromise TRIO function and test for effects in a limited number of assays. Possible limitations arising from the model systems employed here can be addressed in future studies. Our method does not provide evidence for whether these mutations confer ASD/ID risk or the likelihood that such mutations will result in the development of ASD/ID.
    Here we show that a combination of structure-based computational predictions and experimental validation can be employed to reliably predict whether missense mutations in the human TRIO gene impede TRIO protein function and compromise TRIO\'s role in glutamatergic synapse regulation. With the growing accessibility of genome sequencing, the use of such tools in the accurate identification of pathological mutations will be instrumental in diagnostics of ASD/ID.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    配对类同源结构域转录因子(HDTFs)在脊椎动物的发育中起着至关重要的作用,它们的突变与人类疾病有关。配对类HD的一个独特特征是在特定回文DNA序列上的合作二聚化。然而,HD协同二聚化在动物发育中的功能意义及其在疾病中的失调仍然难以捉摸。使用视网膜TFCone-rodHomeobox(CRX)作为模型,我们已经研究了配对的HD中导致失明的突变,p.E80A和p.K88N,改变CRX的合作二聚化,以显性方式导致基因错误表达和光感受器发育缺陷。CRXE80A在单体WTCRX基序处保持结合,但在二聚体基序处缺乏协同结合。CRXE80A的协同性缺陷影响终末分化中感光基因表达的指数增加,CrxE80A视网膜中的非功能性光感受器。CRXK88N是高度合作的,并定位到异位基因组位点,并强烈富集二聚体HD基序。CRXK88N改变的生化特性破坏了CRX在发育过程中指导动态染色质重塑的能力,以激活光感受器分化程序并沉默祖细胞程序。我们在这里的研究提供了体外和体内分子证据,表明配对类HD协同二聚化调节神经元发育和协同结合的失调会导致严重的显性致盲性视网膜病。
    Paired-class homeodomain transcription factors (HD TFs) play essential roles in vertebrate development, and their mutations are linked to human diseases. One unique feature of paired-class HD is cooperative dimerization on specific palindrome DNA sequences. Yet, the functional significance of HD cooperative dimerization in animal development and its dysregulation in diseases remain elusive. Using the retinal TF Cone-rod Homeobox (CRX) as a model, we have studied how blindness-causing mutations in the paired HD, p.E80A and p.K88N, alter CRX\'s cooperative dimerization, lead to gene misexpression and photoreceptor developmental deficits in dominant manners. CRXE80A maintains binding at monomeric WT CRX motifs but is deficient in cooperative binding at dimeric motifs. CRXE80A\'s cooperativity defect impacts the exponential increase of photoreceptor gene expression in terminal differentiation and produces immature, non-functional photoreceptors in the CrxE80A retinas. CRXK88N is highly cooperative and localizes to ectopic genomic sites with strong enrichment of dimeric HD motifs. CRXK88N\'s altered biochemical properties disrupt CRX\'s ability to direct dynamic chromatin remodeling during development to activate photoreceptor differentiation programs and silence progenitor programs. Our study here provides in vitro and in vivo molecular evidence that paired-class HD cooperative dimerization regulates neuronal development and dysregulation of cooperative binding contributes to severe dominant blinding retinopathies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    P4-ATPases将脂质从外质翻转到细胞膜的细胞质小叶,对许多生物过程至关重要的特性。P4-ATP酶的突变与严重的遗传和复杂的人类疾病有关。我们已经确定了表达,本地化,ATP8A2中四种变异体的ATPase活性,P4-ATPase与被称为小脑共济失调的神经发育障碍相关,智力迟钝,和不平衡综合征4(CAMRQ4)。两种变体,Gly447Arg和Ala772Pro,在催化域有突变,以低水平表达并在细胞中定位错误。相比之下,柔性环中的Glu459Gln变体显示出野生型表达水平,高尔基内体定位,和ATP酶活性。Arg1147Trp变体以50%野生型水平表达,但显示正常的定位和活动。这些结果表明Gly447Arg和Ala772Pro突变通过蛋白质错误折叠引起CAMRQ4。Glu459Gln不太可能是因果关系,而Arg1147Trp可能显示较温和的疾病表型。使用各种预测蛋白质稳定性的程序,我们表明,变异体的实验表达与计算机稳定性评估之间存在良好的相关性,表明这种分析可用于鉴定错误折叠的疾病相关变异体.
    P4-ATPases flip lipids from the exoplasmic to cytoplasmic leaflet of cell membranes, a property crucial for many biological processes. Mutations in P4-ATPases are associated with severe inherited and complex human disorders. We determined the expression, localization and ATPase activity of four variants of ATP8A2, the P4-ATPase associated with the neurodevelopmental disorder known as cerebellar ataxia, impaired intellectual development and disequilibrium syndrome 4 (CAMRQ4). Two variants, G447R and A772P, harboring mutations in catalytic domains, expressed at low levels and mislocalized in cells. In contrast, the E459Q variant in a flexible loop displayed wild-type expression levels, Golgi-endosome localization and ATPase activity. The R1147W variant expressed at 50% of wild-type levels but showed normal localization and activity. These results indicate that the G447R and A772P mutations cause CAMRQ4 through protein misfolding. The E459Q mutation is unlikely to be causative, whereas the R1147W may display a milder disease phenotype. Using various programs that predict protein stability, we show that there is a good correlation between the experimental expression of the variants and in silico stability assessments, suggesting that such analysis is useful in identifying protein misfolding disease-associated variants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人维生素K环氧化物还原酶复合物(hVKORC1),一种将维生素K转化为血液凝固所需形式的关键酶,需要其氧化还原伙伴通过硫醇-二硫化物交换反应递送的还原当量来活化。腔环路(L-环路)是hVKORC1激活的主要介质,这是一个经常藏有许多错义突变的地区。四个L环hVKORC1突变体,在体外建议为抗性(A41S,H68Y)或完全不工作(S52W,W59R),通过数值方法(计算机模拟)在氧化状态下进行了研究。对每个突变体的DYNASOME和POCKETOME进行了表征,并与天然蛋白质进行了比较。最近被描述为由结构稳定的跨膜结构域(TMD)和固有无序的L环组成的模块蛋白,表现出准独立的动力学。突变体的DYNASOME表明,L-loop错义点突变不仅影响其折叠和动力学,还有TMD的,突出了这些结构域之间强烈的突变特异性相互依存。突变诱导效应的另一个结果体现在全局变化(几何,拓扑,和概率)新检测到的隐蔽袋以及L环与其氧化还原蛋白的识别特性的交替。根据我们的结果,我们假设(i)蛋白质内变构调节,(ii)每个突变体的固有变构调节和隐伏袋取决于其DYNASOME;(iii)hVKORC1(INTERACTOME)对氧化还原蛋白的识别取决于其DYNASOME。这种对蛋白质的多方面描述产生了“组学”数据集,对于理解蛋白质的生理过程和由各种“组学”水平的蛋白质性质改变引起的病理至关重要。此外,这种特征为血液疾病治疗所必需的“全网络药物”的开发开辟了新的前景。
    The human Vitamin K Epoxide Reductase Complex (hVKORC1), a key enzyme transforming vitamin K into the form necessary for blood clotting, requires for its activation the reducing equivalents delivered by its redox partner through thiol-disulfide exchange reactions. The luminal loop (L-loop) is the principal mediator of hVKORC1 activation, and it is a region frequently harbouring numerous missense mutations. Four L-loop hVKORC1 mutants, suggested in vitro as either resistant (A41S, H68Y) or completely inactive (S52W, W59R), were studied in the oxidised state by numerical approaches (in silico). The DYNASOME and POCKETOME of each mutant were characterised and compared to the native protein, recently described as a modular protein composed of the structurally stable transmembrane domain (TMD) and the intrinsically disordered L-loop, exhibiting quasi-independent dynamics. The DYNASOME of mutants revealed that L-loop missense point mutations impact not only its folding and dynamics, but also those of the TMD, highlighting a strong mutation-specific interdependence between these domains. Another consequence of the mutation-induced effects manifests in the global changes (geometric, topological, and probabilistic) of the newly detected cryptic pockets and the alternation of the recognition properties of the L-loop with its redox protein. Based on our results, we postulate that (i) intra-protein allosteric regulation and (ii) the inherent allosteric regulation and cryptic pockets of each mutant depend on its DYNASOME; and (iii) the recognition of the redox protein by hVKORC1 (INTERACTOME) depend on their DYNASOME. This multifaceted description of proteins produces \"omics\" data sets, crucial for understanding the physiological processes of proteins and the pathologies caused by alteration of the protein properties at various \"omics\" levels. Additionally, such characterisation opens novel perspectives for the development of \"allo-network drugs\" essential for the treatment of blood disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在肌萎缩侧索硬化症中经常共同观察到TARDNA结合蛋白43(TDP-43)和α-突触核蛋白(α-Syn)的异常聚集和淀粉样蛋白包涵体,帕金森病,和老年痴呆症。一些报道显示TDP-43C末端结构域(CTD)和α-Syn相互作用,并且这两种蛋白质的聚集体在不同的细胞和动物模型中共同定位在一起。进行分子动力学模拟以阐明TDP-43和Syn复合物结构的稳定性。蛋白质复合物中的界面突变改变了可能导致疾病的蛋白质的稳定性和结合亲和力。这里,我们利用计算饱和诱变方法,包括基于结构的稳定性和结合能计算来计算TDP-43CTD和α-Syn的错义突变对蛋白质稳定性和结合亲和力的系统影响。发现CTD和α-Syn的大多数界面突变会使蛋白质不稳定并降低蛋白质结合亲和力。因此,结果阐明了在TDP-43相关蛋白质病中观察到的错义突变的功能后果,并可能提供涉及这两种蛋白质的共病机制。由RamaswamyH.Sarma沟通。
    Abnormal aggregation and amyloid inclusions of TAR DNA-binding protein 43 (TDP-43) and α-Synuclein (α-Syn) are frequently co-observed in amyotrophic lateral sclerosis, Parkinson\'s disease, and Alzheimer\'s disease. Several reports showed TDP-43 C-terminal domain (CTD) and α-Syn interact with each other and the aggregates of these two proteins colocalized together in different cellular and animal models. Molecular dynamics simulation was conducted to elucidate the stability of the TDP-43 and Syn complex structure. The interfacial mutations in protein complexes changes the stability and binding affinity of the protein that may cause diseases. Here, we have utilized the computational saturation mutagenesis approach including structure-based stability and binding energy calculations to compute the systemic effects of missense mutations of TDP-43 CTD and α-Syn on protein stability and binding affinity. Most of the interfacial mutations of CTD and α-Syn were found to destabilize the protein and reduced the protein binding affinity. The results thus shed light on the functional consequences of missense mutations observed in TDP-43 associated proteinopathies and may provide the mechanisms of co-morbidities involving these two proteins.Communicated by Ramaswamy H. Sarma.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号