microgel

微凝胶
  • 文章类型: Journal Article
    小型化三维组织模型,如球体,已成为一个非常有用和有效的平台来研究肿瘤生理学和探索化疗疗效的影响传统的二维单层培养,因为它们可以提供更深入的分析,特别是关于细胞间的相互作用和扩散。大多数肿瘤球体的发育依赖于肿瘤细胞的高增殖能力和自聚集行为。然而,它忽略了细胞外基质介导的微环境因素的影响,是组织结构不可缺少的组成部分。在这项研究中,肝细胞癌(HCC)细胞被包裹在由明胶和透明质酸组成的生物活性微凝胶中,这些微凝胶旨在模拟肿瘤微环境,以诱导肝肿瘤球体的形成。两种不同的肝癌亚型,HepG2和Hep3B细胞系,正在探索。微凝胶的物理力学和生化特性,通过改变交联密度和聚合物组成来控制,清楚地表明对地层和球状体的形成有重大影响。此外,由不同细胞和微凝胶特性制成的球体显示出高度可变的化学抗性效应,进一步突出微环境因素指导肿瘤球体生理的重要性。
    Miniaturized three-dimensional tissue models, such as spheroids, have become a highly useful and efficient platform to investigate tumor physiology and explore the effect of chemotherapeutic efficacy over traditional two-dimensional monolayer culture, since they can provide more in-depth analysis, especially in regards to intercellular interactions and diffusion. The development of most tumor spheroids relies on the high proliferative capacity and self-aggregation behavior of tumor cells. However, it disregards the effect of microenvironmental factors mediated by extracellular matrix, which are indispensable components of tissue structure. In this study, hepatocellular carcinoma (HCC) cells are encapsulated in bioactive microgels consisting of gelatin and hyaluronic acid designed to emulate tumor microenvironment in order to induce hepatic tumor spheroid formation. Two different subtypes of HCC\'s, HepG2 and Hep3B cell lines, are explored. The physicomechanical and biochemical properties of the microgels, controlled by changing the crosslinking density and polymer composition, are clearly shown to have substantial influence over the formation and spheroid formation. Moreover, the spheroids made from different cells and microgel properties display highly variable chemoresistance effects, further highlighting the importance of microenvironmental factors guiding tumor spheroid physiology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目前,大骨缺损的愈合依赖于侵入性手术和自体骨移植。作为一种侵入性较小的治疗选择,提供促进有缺陷的骨骼再生的微环境具有很大的希望。这里,我们开发了基于透明质酸(HA)/明胶(Ge)微凝胶的支架来指导骨再生。为了在辣根过氧化物酶(HRP)和过氧化氢(H2O2)的存在下通过酶交联形成微凝胶,我们用酪胺(TA)改性聚合物。分光光度法和质子核磁共振(1HNMR)光谱分析证实在聚合物主链上成功取代酪胺。为了通过油包水乳液方法形成微凝胶,调节HRP和H2O2浓度以在几秒钟内实现凝胶化。通过将搅拌速度从600改变到1000rpm,球形微凝胶的平均尺寸为116±8.7和68±4.7μm,分别。结果表明,微凝胶可通过针头注射,并与培养的人骨肉瘤细胞系(MG-63)表现出良好的生物相容性。HA/Ge-TA微凝胶是MG-63细胞的有希望的底物,因为它们提高了碱性磷酸酶的活性和钙沉积水平。总之,开发的HA/Ge-TA微凝胶是骨组织工程中很有前途的可注射微凝胶基支架。
    Currently, the healing of large bone defects relies on invasive surgeries and the transplantation of autologous bone. As a less invasive treatment option, the provision of microenvironments that promote the regeneration of defective bones holds great promise. Here, we developed hyaluronic acid (HA)/gelatin (Ge) microgel-based scaffolds to guide bone regeneration. To enable the formation of microgels by enzymatic cross-linking in the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2), we modified the polymers with tyramine (TA). Spectrophotometry and proton nuclear magnetic resonance (1H NMR) spectroscopy analysis confirmed successful tyramine substitution on polymer backbones. To enable the formation of microgels by a water-in-oil emulsion approach, the HRP and H2O2 concentrations were tuned to achieve the gelation in a few seconds. By varying the stirring speed from 600 to 1000 rpm, spherical microgels were produced with an average size of 116 ± 8.7 and 68 ± 4.7 μm, respectively. The results showed that microgels were injectable through needles and showed good biocompatibility with the cultured human osteosarcoma cell line (MG-63). HA/Ge-TA microgels served as a promising substrate for MG-63 cells since they improved the alkaline phosphatase activity and level of calcium deposition. In summary, the developed HA/Ge-TA microgels are promising injectable microgel-based scaffolds in bone tissue engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    颗粒水凝胶支架(GHS)是通过将水凝胶微粒(HMP)紧密接触(包装),然后是物理和/或化学颗粒间键的形成。明胶甲基丙烯酰(GelMA)GHS最近已成为生物医学应用的有希望的平台;然而,很少有人知道如何包装积木,物理交联的软GelMAHMP,影响GHS的物理(孔微结构和机械/流变特性)和生物学(体外和体内)属性。这里,GHS孔微体系结构是通过外部(离心)力诱导的填料和GelMAHMP变形来调节GHS机械和流变特性,以及体外和体内的生物反应。增加离心力的大小和持续时间会增加HMP变形/填料,降低GHS空隙率和中值孔径,并增加GHS压缩和存储模量。MDA-MB-231人三阴性乳腺癌细胞在松散堆积的GHS中在GelMAHMP表面扩散并变平,而由于空间限制,它们在高度堆积的GHS中采用细长的形态。通过在GHS中培养未处理或blebistatin处理的细胞,显示了非肌肉肌球蛋白II驱动的收缩性对细胞形态的影响。在小鼠体内皮下植入证实了显著较高的内皮细胞,成纤维细胞,和巨噬细胞浸润在GHS内,具有较低的填充密度,这与体外细胞迁移结果一致。这些结果表明,GelMAGHS的包装状态可以实现体外细胞反应和体内组织反应的工程化。这项研究是标准化和工程化GelMAGHS微体系结构以进行组织工程和再生的基本一步。
    Granular hydrogel scaffolds (GHS) are fabricated via placing hydrogel microparticles (HMP) in close contact (packing), followed by physical and/or chemical interparticle bond formation. Gelatin methacryloyl (GelMA) GHS have recently emerged as a promising platform for biomedical applications; however, little is known about how the packing of building blocks, physically crosslinked soft GelMA HMP, affects the physical (pore microarchitecture and mechanical/rheological properties) and biological (in vitro and in vivo) attributes of GHS. Here, the GHS pore microarchitecture is engineered via the external (centrifugal) force-induced packing and deformation of GelMA HMP to regulate GHS mechanical and rheological properties, as well as biological responses in vitro and in vivo. Increasing the magnitude and duration of centrifugal force increases the HMP deformation/packing, decreases GHS void fraction and median pore diameter, and increases GHS compressive and storage moduli. MDA-MB-231 human triple negative breast adenocarcinoma cells spread and flatten on the GelMA HMP surface in loosely packed GHS, whereas they adopt an elongated morphology in highly packed GHS as a result of spatial confinement. Via culturing untreated or blebbistatin-treated cells in GHS, the effect of non-muscle myosin II-driven contractility on cell morphology is shown. In vivo subcutaneous implantation in mice confirms a significantly higher endothelial, fibroblast, and macrophage cell infiltration within the GHS with a lower packing density, which is in accordance with the in vitro cell migration outcome. These results indicate that the packing state of GelMA GHS may enable the engineering of cell response in vitro and tissue response in vivo. This research is a fundamental step forward in standardizing and engineering GelMA GHS microarchitecture for tissue engineering and regeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    铅(Pb2+)是一种普遍存在的污染物。膜过滤是最常见的水处理方法之一,但是纳滤和超滤需要很高的跨膜压力,虽然微滤的孔径比离子大,使它们不利于低成本直接去除离子。通过膜过滤以高效率选择性和直接分离Pb2+而不牺牲清洁水的通量仍然具有挑战性。在这里,受Pb2+耐受夹竹桃的启发,该夹竹桃丰富并防止根中的Pb2+渗透到植物体中,通过将双响应性聚(N-异丙基丙烯酰胺基-co-丙烯酰胺基-苯并-18-冠-6)(PNB-5-20)微凝胶加载到商业膜上,制备了具有温度和离子可调水门的智能Pb2吸附过滤膜。PNB-5-20微凝胶表现出明显的温度响应性溶胀/去溶胀(流体动力学直径,650-330nm),体积相变温度(VPTT)为〜33°C。此外,微凝胶显示出较高的Pb2+吸附能力(qmax,85.4mg/g)和良好的选择性(分配系数Kd〜1000mL/g)得益于其与冠醚的络合,以及良好的Pb2+响应能力,在Pb2存在下,VPTT正向移至40°C,溶胀行为增强。与PNB-5-20功能,智能膜集成了Pb2+检测,吸附,和可调排水在一个单一的设备。膜选择性地识别污染水中的Pb2+,膜孔中的门从“打开”切换到“关闭”,水渗透减少了对Pb2+的截留和吸附。一旦纯化,门可以通过升高温度来“重新打开”。这种具有可调水门和优异的Pb2+识别和吸附性能的智能膜过滤装置的构建将大大简化Pb2+污染水的修复。
    Lead (Pb2+) is a ubiquitous pollutant. Membrane filtration represents one of the most common water treatment methods, but nanofiltration and ultrafiltration require high transmembrane pressure, while microfiltration has larger pore sizes than ions, making them unfavorable for direct ion removal at low cost. Selective and direct separation of Pb2+ via membrane filtration at high efficiency without sacrificing the flux of clean water still remains challenging. Herein, inspired by the Pb2+-tolerable oleander that enriches and prevents Pb2+ in roots from permeating the plant body, a smart Pb2+-adsorptive filtration membrane with a temperature- and ion-tunable water gate was prepared by loading dual-responsive poly(N-isopropylacrylamido-co-acrylamido-benzo-18-crown-6) (PNB-5-20) microgels onto a commercial membrane. The PNB-5-20 microgel exhibits pronounced temperature-responsive swelling/deswelling (hydrodynamic diameter, 650-330 nm) with a volume phase transition temperature (VPTT) at ∼33 °C. Moreover, the microgel shows a high Pb2+-adsorption capacity (qmax, 85.4 mg/g) and good selectivity (distribution coefficient Kd ∼ 1000 mL/g) thanks to its complexation with the crown ether, as well as good Pb2+ responsiveness, having the VPTT positively shifted to 40 °C in the presence of Pb2+ with enhanced swelling behaviors. Functionalized with PNB-5-20, the smart membrane integrates Pb2+ detection, adsorption, and tunable water drainage in a single device. The membrane selectively recognizes Pb2+ in the polluted water with the gates in membrane pores switching from \"open\" to \"closed\", intercepting and adsorbing Pb2+ with water permeation reduced. Once purified, the gates can be \"re-opened\" by increasing the temperature. Construction of such an intelligent membrane filtration device with a tunable water gate and excellent Pb2+ recognition and adsorption performance will greatly simplify the remediation of Pb2+-polluted water.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    声带(VF)疤痕,喉科的一个复杂问题,VFs分层结构的损伤和炎症的结果。由此产生的声音嘶哑,目前成功的治疗选择有限,影响患者的生活质量。逆转这种疾病的有希望的策略是使用抗纤维化药物。本研究提出了一种新型的微珠嵌入的可注射水凝胶,可以维持抗纤维化药物吡非尼酮(PFD)的释放,用于声带瘢痕形成。微珠是使用海藻酸钠和明胶开发的,将其进一步嵌入仿生和组织粘合剂结冷胶(GG)水凝胶中。嵌入微珠的水凝胶显示出改善的可注射性,粘弹性,组织粘附性,降解性,与没有珠子的水凝胶相比和溶胀。此外,嵌入珠子的水凝胶可以维持PFD的释放一周。体外研究表明,载药水凝胶可以剂量依赖的方式降低成纤维细胞的迁移和增殖。总之,这项研究证明了负载PFD的可注射水凝胶具有增强的粘弹性和组织粘附性,可用于声带瘢痕化应用的潜力。
    Vocal fold (VF) scarring, a complex problem in laryngology, results from injury and inflammation of the layered architecture of the VFs. The resultant voice hoarseness, for which successful therapeutic options are currently limited, affects the patient\'s quality of life. A promising strategy to reverse this disorder is the use of antifibrotic drugs. The present study proposes a novel microbead-embedded injectable hydrogel that can sustain the release of the anti-fibrotic drug pirfenidone (PFD) for vocal fold scarring. Microbeads were developed using sodium alginate and gelatin, which were further embedded into a biomimetic and tissue adhesive gellan gum (GG) hydrogel. The microbead-embedded hydrogel exhibited improved injectability, viscoelasticity, tissue adhesiveness, degradability, and swelling compared to the hydrogel without beads. Additionally, the bead-embedded hydrogel could sustain the release of the PFD for a week. In vitro studies showed that the drug-loaded hydrogel could reduce the migration and proliferation of fibroblast cells in a dose-dependent manner. In summary, this study demonstrates the potential of a PFD-loaded injectable hydrogel with enhanced viscoelastic and tissue-adhesive properties for vocal fold scarring applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    合成聚合物的组合,如聚(N-异丙基丙烯酰胺)(PNIPAM),天然生物分子,如角蛋白,在生物医学领域显示出潜力,因为这些杂种将PNIPAM的热响应特性与角蛋白的生物活性特性相结合。这种协同作用旨在生产能够对环境刺激做出反应,同时保持生物相容性和功能性的杂种,使它们适用于各种医疗和生物技术用途。在这项研究中,我们在纺织工业中利用从羊毛废料中提取的角蛋白,通过硫解提取,用PNIPAM微凝胶合成杂化物。利用两种不同的方法-NIPAM与角蛋白(HYB-P)的聚合以及将预制的PNIPAM微凝胶与角蛋白(HYB-M)混合-导致角蛋白含量为20%和25%的杂种,分别。动态光散射(DLS)和透射电子显微镜(TEM)分析表明,HYB-P形成了胶体系统,其粒径约为110nm,HYB-M为518nm。两种系统中都存在角蛋白,20%和25%,分别,通过光谱(FTIR和NMR)和元素分析证实。在HYB-P和HYB-M之间观察到明显的结构差异,表明前者的接枝共聚物构型和后者的络合。此外,这些杂种表现出类似于PNIPAM微凝胶的温度响应性和pH响应性,强调了它们在各种生物医学应用中的潜力。
    Combinations of synthetic polymers, such as poly(N-isopropylacrylamide) (PNIPAM), with natural biomolecules, such as keratin, show potential in the field of biomedicine, since these hybrids merge the thermoresponsive properties of PNIPAM with the bioactive characteristics of keratin. This synergy aims to produce hybrids that can respond to environmental stimuli while maintaining biocompatibility and functionality, making them suitable for various medical and biotechnological uses. In this study, we exploit keratin derived from wool waste in the textile industry, extracted via sulfitolysis, to synthesize hybrids with PNIPAM microgel. Utilizing two distinct methods-polymerization of NIPAM with keratin (HYB-P) and mixing preformed PNIPAM microgels with keratin (HYB-M)-resulted in hybrids with 20% and 25% keratin content, respectively. Dynamic light scattering (DLS) and transmission electron microscopic (TEM) analyses indicated the formation of colloidal systems with particle sizes of around 110 nm for HYB-P and 518 nm for HYB-M. The presence of keratin in both systems, 20% and 25%, respectively, was confirmed by spectroscopic (FTIR and NMR) and elemental analyses. Distinct structural differences were observed between HYB-P and HYB-M, suggesting a graft copolymer configuration for the former hybrid and a complexation for the latter one. Furthermore, these hybrids demonstrated temperature responsiveness akin to PNIPAM microgels and pH responsiveness, underscoring their potential for diverse biomedical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    递送治疗性干细胞以治疗骨组织损伤是一种有希望的策略,其面临许多阻碍临床转化的障碍。其中包括促进新骨形成所需细胞行为的递送载体的设计。在这项工作中,我们描述了可注射微孔水凝胶的使用,由交联明胶微凝胶制成,用于人类间充质干细胞(MSC)的封装和递送,并将其与传统的无孔可注射水凝胶进行比较。包封在微孔水凝胶中的MSC显示出具有直接细胞-细胞连接的快速细胞扩散,而无孔水凝胶中的MSC被周围的聚合物网截留并彼此分离。在每个细胞的基础上,与无孔水凝胶相比,在微孔水凝胶中的封装会导致碱性磷酸酶(ALP)活性和钙矿物质沉积增加4倍,通过ALP和钙测定法测量,这表明更强大的成骨分化。RNA-seq证实了与细胞扩散和细胞-细胞连接相关的基因和途径的上调,以及微孔水凝胶中的成骨作用。这些结果表明,基于微凝胶的可注射水凝胶可以是用于骨组织修复的治疗性细胞递送的有用工具。
    Delivery of therapeutic stem cells to treat bone tissue damage is a promising strategy that faces many hurdles to clinical translation. Among them is the design of a delivery vehicle which promotes desired cell behavior for new bone formation. In this work, we describe the use of an injectable microporous hydrogel, made of crosslinked gelatin microgels, for the encapsulation and delivery of human mesenchymal stem cells (MSCs) and compared it to a traditional nonporous injectable hydrogel. MSCs encapsulated in the microporous hydrogel showed rapid cell spreading with direct cell-cell connections whereas the MSCs in the nonporous hydrogel were entrapped by the surrounding polymer mesh and isolated from each other. On a per-cell basis, encapsulation in microporous hydrogel induced a 4 × increase in alkaline phosphatase (ALP) activity and calcium mineral deposition in comparison to nonporous hydrogel, as measured by ALP and calcium assays, which indicates more robust osteogenic differentiation. RNA-seq confirmed the upregulation of the genes and pathways that are associated with cell spreading and cell-cell connections, as well as the osteogenesis in the microporous hydrogel. These results demonstrate that microgel-based injectable hydrogels can be useful tools for therapeutic cell delivery for bone tissue repair.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    造血干细胞(HSC)是造血系统的顶端细胞,产生血液和淋巴谱系的细胞。HSC主要存在于骨髓壁龛内,其包含有助于告知干细胞命运的基质和细胞衍生信号。通过将细胞封装在模拟天然机械和生化特性的水凝胶基质中,已经在体外捕获了骨髓微环境的方面。水凝胶微粒,或者微凝胶,越来越多地用于组装用于细胞培养和非侵入性递送应用的颗粒状生物材料。这里,我们报告了明胶马来酰亚胺水凝胶系统的优化,以通过流动聚焦微流体过程产生单分散明胶微凝胶。我们报告了特征水凝胶刚度,稳定性,和肿胀特征以及小鼠造血干细胞和祖细胞的封装,和微凝胶内的间充质干细胞。微凝胶支持细胞活力,确认微流体封装过程与这些敏感的骨髓细胞群体的相容性。总的来说,这项工作提出了一种基于微凝胶的明胶马来酰亚胺水凝胶,作为未来开发多细胞人工骨髓培养系统的基础。
    Hematopoietic stem cells (HSCs) are the apical cells of the hematopoietic system, giving rise to cells of the blood and lymph lineages. HSCs reside primarily within bone marrow niches that contain matrix and cell-derived signals that help inform stem cell fate. Aspects of the bone marrow microenvironment have been captured in vitro by encapsulating cells within hydrogel matrices that mimic native mechanical and biochemical properties. Hydrogel microparticles, or microgels, are increasingly being used to assemble granular biomaterials for cell culture and noninvasive delivery applications. Here, we report the optimization of a gelatin maleimide hydrogel system to create monodisperse gelatin microgels via a flow-focusing microfluidic process. We report characteristic hydrogel stiffness, stability, and swelling characteristics as well as encapsulation of murine hematopoietic stem and progenitor cells, and mesenchymal stem cells within microgels. Microgels support cell viability, confirming compatibility of the microfluidic encapsulation process with these sensitive bone marrow cell populations. Overall, this work presents a microgel-based gelatin maleimide hydrogel as a foundation for future development of a multicellular artificial bone marrow culture system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在本文中,通过将疏水改性壳聚糖(h-CS)与植酸钠(SP)物理交联,制备出粒径均匀的微凝胶。交联密度对界面吸附动力学的影响,粘弹性,应力松弛,和疏水改性壳聚糖微凝胶(h-CSMs)在油-水界面的微流变特性进行了广泛的研究,压缩流变学,和颗粒示踪微流变学。结果与颗粒大小相关,形态学,通过动态光散射和原子力显微镜表征微凝胶的弹性。发现随着交联密度的增加,h-CSM从类似聚合物的状态变为具有较高弹性模量的超软杂乱球。压缩等温线显示出由壳之间和微凝胶核心之间的相互作用引起的多级增加。随着交联密度的增加,h-CSM向油水界面扩散较慢,但在油水界面表现出更快的渗透吸附和重排,由于核心-核心相互作用,最终形成具有较高粘弹性模量的界面层。随着微凝胶弹性的增加,初始张力松弛和界面扩张后的微凝胶重排都变得更快。界面微流变证明了由相邻微凝胶引起的动态笼效应。本文对多糖微凝胶在油-水界面的行为进行了更全面的了解。
    In this paper, microgels with uniform particle size were prepared by physically cross-linking the hydrophobically modified chitosan (h-CS) with sodium phytate (SP). The effects of cross-linking density on the interfacial adsorption kinetics, viscoelasticity, stress relaxation, and micorheological properties of the hydrophobically modified chitosan microgels (h-CSMs) at the oil-water interface were extensively investigated by the dilatational rheology, compressional rheology, and particle tracing microrheology. The results were correlated with the particle size, morphology, and elasticity of the microgels characterized by dynamic light scattering and atomic force microscopy. It was found that with the increase of cross-linking density, the h-CSMs changed from a polymer-like state to ultra-soft fussy spheres with higher elastic modulus. The compression isotherms demonstrated multi-stage increase caused by the interaction between the shells and that between the cores of the microgels successively. As the increase of cross-linking density, the h-CSMs diffused slower to the oil-water interface, but demonstrating faster permeation adsorption and rearrangement at the oil-water interface, finally forming interfacial layers of higher viscoelastic modulus due to the core-core interaction. Both the initial tension relaxation and the microgel rearrangement after interface expansion became faster as the microgel elasticity increased. The interfacial microrheology demonstrated dynamic caging effect caused by neighboring microgels. This article provides a more comprehensive understanding of the behaviors of polysaccharide microgels at the oil-water interface.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:近年来,由于肠道菌群失调,结直肠癌(CRC)的发病率正在增加,使口服益生菌成为研究的热点。然而,众多与肠道菌群调控相关的研究忽视了其内在机制的深入研究。
    结果:这里,我们开发了益生菌微凝胶递送系统(L.r@(SA-CS)2)通过海藻酸盐(SA)和壳聚糖(CS)的层层包封技术改善肠道菌群失调,增强抗肿瘤治疗效果。L.r产生的短链脂肪酸(SCFA)具有直接的抗肿瘤作用。此外,它减少了有害细菌,如变形杆菌和梭杆菌属,并通过细菌互体增加有益细菌,例如产生丁酸的拟杆菌和厚壁菌。通过与结肠上皮细胞表面的G蛋白偶联受体109A(GPR109A)结合,丁酸可诱导异常细胞凋亡。由于GPR109A在结肠癌细胞中的低表达,MK-6892(MK)可用于刺激GPR109A。随着丁酸盐产量的增加,激活的GPR109A能够结合更多的丁酸,这进一步促进癌细胞的凋亡并引发抗肿瘤反应。
    结论:似乎口服L.r@(SA-CS)2微凝胶可通过改变肠道微生物区为CRC提供治疗选择。
    BACKGROUND: Colorectal cancer (CRC) incidence is increasing in recent years due to intestinal flora imbalance, making oral probiotics a hotspot for research. However, numerous studies related to intestinal flora regulation ignore its internal mechanisms without in-depth research.
    RESULTS: Here, we developed a probiotic microgel delivery system (L.r@(SA-CS)2) through the layer-by-layer encapsulation technology of alginate (SA) and chitosan (CS) to improve gut microbiota dysbiosis and enhance anti-tumor therapeutic effect. Short chain fatty acids (SCFAs) produced by L.r have direct anti-tumor effects. Additionally, it reduces harmful bacteria such as Proteobacteria and Fusobacteriota, and through bacteria mutualophy increases beneficial bacteria such as Bacteroidota and Firmicutes which produce butyric acid. By binding to the G protein-coupled receptor 109A (GPR109A) on the surface of colonic epithelial cells, butyric acid can induce apoptosis in abnormal cells. Due to the low expression of GPR109A in colon cancer cells, MK-6892 (MK) can be used to stimulate GPR109A. With increased production of butyrate, activated GPR109A is able to bind more butyrate, which further promotes apoptosis of cancer cells and triggers an antitumor response.
    CONCLUSIONS: It appears that the oral administration of L.r@(SA-CS)2 microgels may provide a treatment option for CRC by modifying the gut microbiota.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号