microdosimetry

微剂量测定法
  • 文章类型: Journal Article
    背景:可以在不同的尺度(分子直到器官尺度)和照射后的不同时间研究放射在癌症治疗中的放射生物学有效性。水辐射分解过程中自由基和活性氧的产生与理解在观察到的生物学结果中起作用的基本机制特别相关。蒙特卡罗工具的开发和验证集成了物理模拟,辐射后的物理化学和化学阶段对实验保持非常重要。
    目标:因此,在这项研究中,我们建议通过在质子临床前束线上模拟水放射分解和Fricke剂量测定实验来验证新的Geant4-DNA化学模块。
    方法:在本研究中,我们使用GATEMonteCarlo模拟平台(9.3版)模拟了用ARRONAX等时回旋加速器(IBACyclone70XP)以常规剂量率(0.2Gy/s)产生的67.5MeV质子束,以模拟超纯液态水样品和Fricke剂量计的辐照。我们将深度剂量分布与使用平面平行的高级PTW34045Markus电离室进行的测量进行了比较。然后,从Geant4版本11.2提出的新的Geant4-DNA化学应用程序已用于评估HO•${\\mathrm{HO}}^\\bullet$的演变,eaq-${\\mathrm{e}}_{{\\mathrm{aq}}}^-$,H3O+${\\mathrm{H}}}_3{{\\mathrm{O}}}^+$,H2O2${\\mathrm{H}}}_2{{\\mathrm{O}}}_2$,H2${{\\mathrm{H}}}_2$,HO2•${\\mathrm{HO}}_2^\\bullet$,HO2-,O2•-${\\mathrm{HO}}_2^-,{\\mathrm{\\O}}_2^{\\bullet-}$和HO-${\\mathrm{HO}}^-反应性物种沿着时间直到辐照后1小时。特别是,通过与H2O2${{\\mathrm{H}}}_2{{\\mathrm{O}}}_2$和Fe3+的放射产率的实验测量结果进行比较,研究了氧气和pH值的影响。
    结果:复制了GATE模拟,4%以内,液态水中的深度剂量曲线。有了Geant4-DNA,我们能够重现实验H2O2${{\\mathrm{H}}}_2{{\\mathrm{O}}}_2$在曝气和脱气条件下辐照后1小时的辐射分解产量,显示氧气浓度的微小变化对物种随时间进化的影响。对于Fricke剂量计,模拟G(Fe3)为15.97±0.2分子/100eV,比测量值(14.4±04分子/100eV)高11%。
    结论:这些结果旨在通过涉及其他放射性物种的新比较来巩固,例如eaq-${\\mathrm{e}}_{\\mathrm{aq}}^-$或,O2•-$,{\\mathrm{\\O}}_2^{\\bullet-}$进一步研究在超高剂量率(UHDR)下观察到的FLASH效应的潜在机制。
    BACKGROUND: Radiobiological effectiveness of radiation in cancer treatment can be studied at different scales (molecular till organ scale) and different time post irradiation. The production of free radicals and reactive oxygen species during water radiolysis is particularly relevant to understand the fundamental mechanisms playing a role in observed biological outcomes. The development and validation of Monte Carlo tools integrating the simulation of physical, physico-chemical and chemical stages after radiation is very important to maintain with experiments.
    OBJECTIVE: Therefore, in this study, we propose to validate a new Geant4-DNA chemistry module through the simulation of water radiolysis and Fricke dosimetry experiments on a proton preclinical beam line.
    METHODS: In this study, we used the GATE Monte Carlo simulation platform (version 9.3) to simulate a 67.5 MeV proton beam produced with the ARRONAX isochronous cyclotron (IBA Cyclone 70XP) at conventional dose rate (0.2 Gy/s) to simulate the irradiation of ultra-pure liquid water samples and Fricke dosimeter. We compared the depth dose profile with measurements performed with a plane parallel Advanced PTW 34045 Markus ionization chamber. Then, a new Geant4-DNA chemistry application proposed from Geant4 version 11.2 has been used to assess the evolution of HO • ${\\mathrm{HO}}^ \\bullet $ , e aq - ${\\mathrm{e}}_{{\\mathrm{aq}}}^ - $ , H 3 O + ${{\\mathrm{H}}}_3{{\\mathrm{O}}}^ + $ , H 2 O 2 ${{\\mathrm{H}}}_2{{\\mathrm{O}}}_2$ , H 2 ${{\\mathrm{H}}}_2$ , HO 2 • ${\\mathrm{HO}}_2^ \\bullet $ , HO 2 - , O 2 • - ${\\mathrm{HO}}_2^ - ,{\\mathrm{\\ O}}_2^{ \\bullet - }$ and HO - ${\\mathrm{HO}}^ - $ reactive species along time until 1-h post-irradiation. In particular, the effect of oxygen and pH has been investigated through comparisons with experimental measurements of radiolytic yields for H 2 O 2 ${{\\mathrm{H}}}_2{{\\mathrm{O}}}_2$ and Fe3+.
    RESULTS: GATE simulations reproduced, within 4%, the depth dose profile in liquid water. With Geant4-DNA, we were able to reproduce experimental H 2 O 2 ${{\\mathrm{H}}}_2{{\\mathrm{O}}}_2$ radiolytic yields 1-h post-irradiation in aerated and deaerated conditions, showing the impact of small changes in oxygen concentrations on species evolution along time. For the Fricke dosimeter, simulated G(Fe3+) is 15.97 ± 0.2 molecules/100 eV which is 11% higher than the measured value (14.4 ± 04 molecules/100 eV).
    CONCLUSIONS: These results aim to be consolidated by new comparisons involving other radiolytic species, such as e aq - ${\\mathrm{e}}_{{\\mathrm{aq}}}^ - $ or , O 2 • - $,{\\mathrm{\\ O}}_2^{ \\bullet - }$ to further study the mechanisms underlying the FLASH effect observed at ultra-high dose rates (UHDR).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    靶向α治疗是广泛肿瘤类型的姑息治疗的新兴替代方案。来自临床前和临床研究的数据表明,选择性杀死肿瘤细胞的潜力很大,对周围隐形组织的毒性最小。本文总结了α靶向治疗从基准到商业化的发展阶段。它讨论了基本属性,生产途径,微剂量测定,和可能的靶向载体。在探索α发射体的临床应用时,还将其与其他标准治疗程序进行了比较。最后,像其他疗法一样,还说明了它面临的挑战及其对个性化医疗的未来影响。
    Targeted alpha therapy is an emerging alternative for palliative therapy of a wide range of tumor types. Data from preclinicaland clinical research demonstrates a high potential for the selective killing of tumor cells and minimal toxicity to surroundinghealthy tissues. This article summarizes the developmental stages of alpha-targeted therapy from benchtop to commercialization.It discusses fundamental properties, production pathways, microdosimetry, and possible targeting vectors. Proper coverage hasalso been given to comparing it with other standard treatment procedures while exploring clinical applications of alpha emitters.In the end, like other therapies, the challenges it faces and its future impact on personalized medicine are also illustrated.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在接下来的十年里,国际辐射防护委员会(ICRP)将发布下一套一般性建议,为此,需要评估各种类型的组织反应的相对生物学有效性(RBE)。ICRP最近将循环系统(DCS)疾病分类为组织反应,但不建议将RBE用于DCS。因此,我们通过应用专门用于组织反应RBE估计的微剂量动力学模型来评估DCS的RBE的均值和不确定性。为此,我们分析了通过过去的动物实验确定的DCS的多个RBE数据,并评估了与每个实验最佳拟合的亚核域半径作为模型中包含的单个自由参数.我们的分析表明,DCS的RBE倾向于低于皮肤反应,由于评估参数的差异很大,它们的差异是临界显著的。我们还发现,在人体单能中子辐照后,DCS的RBE远低于皮肤反应的RBE,特别是在热能和1MeV左右。这种趋势被认为不仅归因于皮肤反应与DCS之间中子RBE的固有差异,而且归因于次级γ射线对其靶器官之间总吸收剂量的贡献差异。这些发现将有助于通过ICRP确定RBE以防止组织反应。
    In the next decade, the International Commission on Radiological Protection (ICRP) will issue the next set of general recommendations, for which evaluation of relative biological effectiveness (RBE) for various types of tissue reactions would be needed. ICRP has recently classified diseases of the circulatory system (DCS) as a tissue reaction, but has not recommended RBE for DCS. We therefore evaluated the mean and uncertainty of RBE for DCS by applying a microdosimetric kinetic model specialized for RBE estimation of tissue reactions. For this purpose, we analyzed several RBE data for DCS determined by past animal experiments and evaluated the radius of the subnuclear domain best fit to each experiment as a single free parameter included in the model. Our analysis suggested that RBE for DCS tends to be lower than that for skin reactions, and their difference was borderline significant due to large variances of the evaluated parameters. We also found that RBE for DCS following mono-energetic neutron irradiation of the human body is much lower than that for skin reactions, particularly at the thermal energy and around 1 MeV. This tendency is considered attributable not only to the intrinsic difference of neutron RBE between skin reactions and DCS but also to the difference in the contributions of secondary γ-rays to the total absorbed doses between their target organs. These findings will help determine RBE by ICRP for preventing tissue reactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    低剂量暴露引发的生物学机制仍需深入探讨。在这项研究中,通过模拟和实验研究了用Cs-137γ射线源照射BEAS-2B细胞系时低剂量辐射的潜在机制。结合蒙特卡罗方法和微剂量学分析,构建了单层细胞群模型,用于模拟和分析细胞群中核比能量的分布。此外,采用10×基因组学单细胞测序技术,在同一照射样品中捕获单个细胞对低剂量辐射反应的异质性.在微剂量学中的特定能量分布和辐射细胞遗传学中的差异基因表达中都可以发现数值不确定性。随后,将核比能量的分布与差异基因表达的分布进行比较,以指导差异基因的选择生物信息学分析。剂量不均匀性在低剂量时很明显,其中剂量的增加对应于细胞比能量分布的分散的减少。通过微剂量学特征和统计分析对差异基因进行多重筛选,表明低剂量暴露诱导了许多潜在的途径。它还为选择对低剂量辐射有反应的敏感生物标志物提供了新的视角。
    The biological mechanisms triggered by low-dose exposure still need to be explored in depth. In this study, the potential mechanisms of low-dose radiation when irradiating the BEAS-2B cell lines with a Cs-137 gamma-ray source were investigated through simulations and experiments. Monolayer cell population models were constructed for simulating and analyzing distributions of nucleus-specific energy within cell populations combined with the Monte Carlo method and microdosimetric analysis. Furthermore, the 10 × Genomics single-cell sequencing technology was employed to capture the heterogeneity of individual cell responses to low-dose radiation in the same irradiated sample. The numerical uncertainties can be found both in the specific energy distribution in microdosimetry and in differential gene expressions in radiation cytogenetics. Subsequently, the distribution of nucleus-specific energy was compared with the distribution of differential gene expressions to guide the selection of differential genes bioinformatics analysis. Dose inhomogeneity is pronounced at low doses, where an increase in dose corresponds to a decrease in the dispersion of cellular-specific energy distribution. Multiple screening of differential genes by microdosimetric features and statistical analysis indicate a number of potential pathways induced by low-dose exposure. It also provides a novel perspective on the selection of sensitive biomarkers that respond to low-dose radiation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们提出了一种数值方法,用于研究正常和癌性宫颈细胞上的可逆电穿孔。这种微剂量学分析建立在一种独特的方法上,用于从扩展景深(EDF)图像中提取簇中自由和重叠的宫颈细胞的轮廓。用于提取轮廓的算法是多级集函数以及高斯混合模型和最大稳定极值区域的联合优化。然后将这些轮廓导出到多物理域求解器,其中施加可变频率脉冲电场。跨细胞膜产生的跨膜电压(TMV)是使用麦克斯韦方程结合统计方法计算的,采用渐近Smoluchowski方程。通过在重叠细胞上使用低频单极脉冲以获得可逆电穿孔的现有实验配置的成功复制来验证数值模型。其中,靶向几个重叠的宫颈细胞团块.对于高频计算,将正常细胞和癌细胞的组合引入计算域。假设单元是色散的,并使用德拜色散方程进行进一步计算。我们还介绍了由于正常和癌性宫颈细胞的大小和电导率差异,因此在正常和癌性宫颈细胞之间实现电穿孔阈值的强度-持续时间关系。数学模型进一步倡导了高频电场电穿孔过程中的染料吸收调制。
    We present a numerical method for studying reversible electroporation on normal and cancerous cervical cells. This microdosimetry analysis builds on a unique approach for extracting contours of free and overlapping cervical cells in the cluster from the Extended Depth of Field (EDF) images. The algorithm used for extracting the contours is a joint optimization of multiple-level set function along with the Gaussian mixture model and Maximally Stable Extremal Regions. These contours are then exported to a multi-physics domain solver, where a variable frequency pulsed electric field is applied. The trans-Membrane voltage (TMV) developed across the cell membrane is computed using the Maxwell equation coupled with a statistical approach, employing the asymptotic Smoluchowski equation. The numerical model was validated by successful replication of existing experimental configurations that employed low-frequency uni-polar pulses on the overlapping cells to obtain reversible electroporation, wherein, several overlapping clumps of cervical cells were targeted. For high-frequency calculation, a combination of normal and cancerous cells is introduced to the computational domain. The cells are assumed to be dispersive and the Debye dispersion equation is used for further calculations. We also present the resulting strength-duration relationship for achieving the threshold value of electroporation between the normal and cancerous cervical cells due to their size and conductivity differences. The dye uptake modulation during the high-frequency electric field electroporation is further advocated by a mathematical model.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:本研究旨在利用TOPAS蒙特卡洛代码研究初始动能为50-250MeV的扩散布拉格峰(SOBP)质子束在水中不同轴上深度的生物有效性。
    方法:本研究使用TOPAS时间特征对SOBP质子束进行建模。采用各种基于LET的模型和修复-误修-固定模型来基于TOPAS计算V79细胞系在不同深度的相对生物学有效性(RBE)。微剂量动力学模型和基于生物加权函数的模型,利用微剂量分布,也用于估计RBE。
    结果:所有RBE模型的RBE随深度的变化趋势相似,但是RBE的值对计算模型很敏感。RBE在SOBP质子束的远端边缘处急剧增加。对于所研究的质子束,在入口区域,RBE在1.04-1.07的范围内,其与临床使用的通用RBE值1.1相当。从SOBP的近端到远端,对于50、100、150、200和250MeVSOBP梁,RBE(4Gy)分别在1.15-1.33、1.13-1.21、1.11-1.17、1.13-1.18和1.17-1.21的范围内。而在远端剂量下降区域,RBE值分别为1.68、1.53、1.44、1.42和1.40。对于上述光束。RBE(2Gy)高于相应的RBE(4Gy)值。
    结论:该研究揭示了应用深度的重要性-质子束临床应用中的剂量和能量依赖性RBE值。 .
    Objective.This study aims to investigate the biological effectiveness of Spread-Out Bragg-Peak (SOBP) proton beams with initial kinetic energies 50-250 MeV at different depths in water using TOPAS Monte Carlo code.Approach.The study modelled SOBP proton beams using TOPAS time feature. Various LET-based models and Repair-Misrepair-Fixation model were employed to calculate Relative Biological Effectiveness (RBE) for V79 cell lines at different on-axis depths based on TOPAS. Microdosimetric Kinetic Model and biological weighting function-based models, which utilize microdosimetric distributions, were also used to estimate the RBE. A phase-space-based method was adopted for calculating microdosimetric distributions.Main results.The trend of variation of RBE with depth is similar in all the RBE models, but the absolute RBE values vary based on the calculation models. RBE sharply increases at the distal edge of SOBP proton beams. In the entrance region of all the proton beams, RBE values at 4 Gy i.e. RBE(4 Gy) resulting from different models are in the range of 1.04-1.07, comparable to clinically used generic RBE of 1.1. Moving from the proximal to distal end of the SOBP, RBE(4 Gy) is in the range of 1.15-1.33, 1.13-1.21, 1.11-1.17, 1.13-1.18 and 1.17-1.21, respectively for 50, 100, 150, 200 and 250 MeV SOBP beams, whereas at the distal dose fall-off region, these values are 1.68, 1.53, 1.44, 1.42 and 1.40, respectively.Significance.The study emphasises application of depth-, dose- and energy- dependent RBE values in clinical application of proton beams.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    准确预测硼中子俘获疗法(BNCT)的相对生物有效性(RBE)具有挑战性。该疗法与其他放射疗法不同;含硼化合物在肿瘤细胞中的动态分布极大地影响了治疗结果,并阻碍了中子吸收剂量的精确测量。在这里,我们使用含硼的金属-有机骨架纳米粒子(BMOFs)以U87-MG细胞为目标,维持细胞中10B同位素的浓度.与开始时相比,电池中的硼含量在20分钟内可以保持90%(60ppm)。因此,可以获得BNCT的准确RBE。观察到BNCT对中子辐照后细胞的影响,并通过蒙特卡罗模拟获得中子吸收剂量。BMOFs的RBE为6.78,比小分子含硼试剂(硼酸)高4.1倍。通过蒙特卡罗模拟分析了各种粒子的能谱,理论上验证了RBE。我们的结果表明,在BNCT中使用基于纳米颗粒的硼载体可能具有许多优点,并且在细胞内保持稳定的硼分布可以显着提高BNCT的效率。
    Accurate prediction of the relative biological effectiveness (RBE) of boron neutron capture therapy (BNCT) is challenging. The therapy is different from other radiotherapy; the dynamic distribution of boron-containing compounds in tumor cells affects the therapeutic outcome considerably and hampers accurate measurement of the neutron-absorbed dose. Herein, we used boron-containing metal-organic framework nanoparticles (BMOFs) with high boron content to target U87-MG cells and maintain the concentration of the 10B isotope in cells. The content of boron in the cells could maintain 90% (60 ppm) within 20 min compared with that at the beginning; therefore, the accurate RBE of BNCT can be acquired. The effects of BNCT upon cells after neutron irradiation were observed, and the neutron-absorbed dose was obtained by Monte Carlo simulations. The RBE of BMOFs was 6.78, which was 4.1-fold higher than that of a small-molecule boron-containing agent (boric acid). The energy spectrum of various particles was analyzed by Monte Carlo simulations, and the RBE was verified theoretically. Our results suggested that the use of nanoparticle-based boron carriers in BNCT may have many advantages and that maintaining a stable boron distribution within cells may significantly improve the efficiency of BNCT.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:在本文中,我们提出MONAS(基于显微术的modelliNg用于相对生物学有效性(RBE)评估)工具包。MONAS是TOPAS蒙特卡洛的延伸,将微剂量测定分布的模拟与基于放射生物学微剂量测定的模型相结合,用于预测细胞存活曲线和剂量依赖性RBE。 方法:MONAS扩展TOPAS微剂量扩展,通过包括新颖的特定能量记分器来计算不同微米尺度下的单事件和多事件特定能量微剂量分布。这些光谱用作微剂量动力学模型(MKM)的三种不同公式的物理输入,和广义随机微剂量模型(GSM2),预测剂量依赖性细胞存活分数和RBE。然后根据实验微剂量光谱和体外存活分数数据验证MONAS预测。要显示MONAS功能,我们介绍了该代码的两种不同应用:i)通过使用实验验证的光谱作为物理输入,从被动散射质子SOBP计算深度RBE曲线,和ii)在用质子治疗的真实头颈部患者几何结构上的3DRBE分布的计算。
主要结果:MONAS可以通过四种临床相关的放射生物学模型从实验验证的微剂量光谱中估算剂量依赖性RBE和细胞存活曲线。从质子SOBP场的放射生物学特征来看,我们观察到众所周知的辐射场远端边缘RBE值增加的趋势。计算的3DRBE图证实了SOBP分析中观察到的趋势,在目标的远端边缘发现最高的RBE值。
意义:MONAS扩展提供了一个全面的基于微剂量学的框架,用于评估粒子辐射在研究和临床环境中的生物效应,将基于实验物理的描述推向生物损伤评估,有助于弥合辐射场的微剂量学描述与其在可变RBE的质子治疗中的应用之间的差距。
    Objective.In this paper, we present MONAS (MicrOdosimetry-based modelliNg for relative biological effectiveness (RBE) ASsessment) toolkit. MONAS is a TOPAS Monte Carlo extension, that combines simulations of microdosimetric distributions with radiobiological microdosimetry-based models for predicting cell survival curves and dose-dependent RBE.Approach.MONAS expands TOPAS microdosimetric extension, by including novel specific energy scorers to calculate the single- and multi-event specific energy microdosimetric distributions at different micrometer scales. These spectra are used as physical input to three different formulations of themicrodosimetric kinetic model, and to thegeneralized stochastic microdosimetric model(GSM2), to predict dose-dependent cell survival fraction and RBE. MONAS predictions are then validated against experimental microdosimetric spectra andin vitrosurvival fraction data. To show the MONAS features, we present two different applications of the code: (i) the depth-RBE curve calculation from a passively scattered proton SOBP and monoenergetic12C-ion beam by using experimentally validated spectra as physical input, and (ii) the calculation of the 3D RBE distribution on a real head and neck patient geometry treated with protons.Main results.MONAS can estimate dose-dependent RBE and cell survival curves from experimentally validated microdosimetric spectra with four clinically relevant radiobiological models. From the radiobiological characterization of a proton SOBP and12C fields, we observe the well-known trend of increasing RBE values at the distal edge of the radiation field. The 3D RBE map calculated confirmed the trend observed in the analysis of the SOBP, with the highest RBE values found in the distal edge of the target.Significance.MONAS extension offers a comprehensive microdosimetry-based framework for assessing the biological effects of particle radiation in both research and clinical environments, pushing closer the experimental physics-based description to the biological damage assessment, contributing to bridging the gap between a microdosimetric description of the radiation field and its application in proton therapy treatment with variable RBE.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:这项工作旨在研究小型化组织等效比例计数器对临床辐射场中光束质量变化的敏感性,进一步研究其作为辐射质量监测仪的性能。
    方法:在CATANA设施进行测量(INFN-LNS,卡塔尼亚,意大利),在单能和能量调制的质子束中,初始能量相同,为62MeV。将PMMA层放置在检测器的前面,以在沿着深度-剂量分布的不同深度处进行测量。将频率和剂量平均线性能量与通过蒙特卡洛模拟计算的轨迹和剂量平均LET进行比较。进行了相对生物有效性(RBE)的微剂量评估,并与细胞存活实验进行了比较。
    结果:在两个光束的相同深度处测得的微剂量分布显示出反映其不同辐射质量的光谱差异。差异在与展开布拉格峰相对应的深度最为明显,而入口和剂量下降区域的光谱相似。这可以通过在每个深度处组成原始峰和展开峰的不同能量分量来解释。微剂量平均值的趋势与整个穿透深度计算的LET平均值的趋势一致。RBE的微剂量估计不仅与2Gy的放射生物学数据一致,而且与较低剂量水平的放射生物学数据一致,比如那些被健康组织吸收的。
    结论:mini-TEPC对质子束不同调制导致的辐射质量差异敏感,证实其在质子治疗中的束质量监测的潜力。
    OBJECTIVE: This work aims at studying the sensitivity of a miniaturized Tissue-Equivalent Proportional Counter to variations of beam quality in clinical radiation fields, to further investigate its performances as radiation quality monitor.
    METHODS: Measurements were taken at the CATANA facility (INFN-LNS, Catania, Italy), in a monoenergetic and an energy-modulated proton beam with the same initial energy of 62 MeV. PMMA layers were placed in front of the detector to measure at different depths along the depth-dose profile. The frequency- and dose-mean lineal energy were compared to the track- and dose-averaged LET calculated by Monte Carlo simulations. A microdosimetric evaluation of the Relative Biological Effectiveness (RBE) was performed and compared with cell survival experiments.
    RESULTS: Microdosimetric distributions measured at identical depths in the two beams show spectral differences reflecting their different radiation quality. Discrepancies are most evident at depths corresponding to the Spread-Out Bragg Peak, while spectra at the entrance and in the dose fall-off regions are similar. This can be explained by the different energy components that compose the pristine and spread-out peaks at each depth. The trend of microdosimetric mean values matches that of calculated LET averages along the entire penetration depth, and the microdosimetric estimation of RBE is consistent with radiobiological data not only at 2 Gy but also at lower dose levels, such as those absorbed by healthy tissues.
    CONCLUSIONS: The mini-TEPC is sensitive to differences in radiation quality resulting from different modulations of the proton beam, confirming its potential for beam quality monitoring in proton therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:尽管众所周知,乳腺癌筛查和早期诊断的好处是降低乳腺癌死亡率,低辐射剂量对乳腺细胞的影响和风险仍是研究的主题。
    目的:研究特定的能量分布(f(z,Dg)$f(z,D_{g})$)对于不同的X射线乳腺成像方式,对应于腺体组织的细胞的细胞质和细胞核。
    方法:用从相空间文件加载的光子以不同的腺体体素剂量(Dg$D_{g}$)照射包含4064个球形细胞的立方晶格(500μm长)。使用PENELOPE(v。2018)+penEasy(v.2020)蒙特卡洛(MC)代码。相空间文件,在这项工作的第一部分中产生的,是从MC模拟中获得的,在对应于不同乳房成像方式的腺体体素的体素化拟人化体模中,包括数字乳房X线照相术(DM),数字乳房断层合成(DBT),对比增强数字乳腺X线摄影(CEDM)和乳腺CT(BCT)。
    结果:一般来说,核中的平均比能高于同一区域中相应的腺体剂量,高达10%。细胞核和细胞质的比能量分布与体素中腺体剂量的大小直接相关(Dg$D_{g}$),对空间位置的依赖性很小。对于类似的Dg$D_{g}$值,f(z,Dg)$f(z,DM/DBT和CEDM/BCT的核D_{g})$不同,表明不同的X射线光谱在f(z,Dg)$f(z,D_{g})$。此外,当考虑到乳房中的GDD时,也存在这种行为。
    结论:微剂量学研究是基于平均腺体剂量(MGD)的传统宏观乳房剂量学的补充。对于相同的MGD,腺体组织中的特定能量分布因乳腺成像模式而异,这表明这种影响可以被考虑用于研究乳房暴露于电离辐射的风险。
    BACKGROUND: Although the benefits of breast screening and early diagnosis are known for reducing breast cancer mortality rates, the effects and risks of low radiation doses to the cells in the breast are still ongoing topics of study.
    OBJECTIVE: To study specific energy distributions ( f ( z , D g ) $f(z,D_{g})$ ) in cytoplasm and nuclei of cells corresponding to glandular tissue for different x-ray breast imaging modalities.
    METHODS: A cubic lattice (500 μm length side) containing 4064 spherical cells was irradiated with photons loaded from phase space files with varying glandular voxel doses ( D g $D_{g}$ ). Specific energy distributions were scored for nucleus and cytoplasm compartments using the PENELOPE (v. 2018) + penEasy (v. 2020) Monte Carlo (MC) code. The phase space files, generated in part I of this work, were obtained from MC simulations in a voxelized anthropomorphic phantom corresponding to glandular voxels for different breast imaging modalities, including digital mammography (DM), digital breast tomosynthesis (DBT), contrast enhanced digital mammography (CEDM) and breast CT (BCT).
    RESULTS: In general, the average specific energy in nuclei is higher than the respective glandular dose scored in the same region, by up to 10%. The specific energy distributions for nucleus and cytoplasm are directly related to the magnitude of the glandular dose in the voxel ( D g $D_{g}$ ), with little dependence on the spatial location. For similar D g $D_{g}$ values, f ( z , D g ) $f(z,D_{g})$ for nuclei is different between DM/DBT and CEDM/BCT, indicating that distinct x-ray spectra play significant roles in f ( z , D g ) $f(z,D_{g})$ . In addition, this behavior is also present when the specific energy distribution ( F g ( z ) $F_{g}(z)$ ) is considered taking into account the GDD in the breast.
    CONCLUSIONS: Microdosimetry studies are complementary to the traditional macroscopic breast dosimetry based on the mean glandular dose (MGD). For the same MGD, the specific energy distribution in glandular tissue varies between breast imaging modalities, indicating that this effect could be considered for studying the risks of exposing the breast to ionizing radiation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号