microbial electrosynthesis

微生物电合成
  • 文章类型: Journal Article
    在厌氧废水处理过程中混合微塑料(MPs)的存在已被证明通过抑制微生物活性来阻碍发酵性能。微生物电合成(MES),凭借其广泛的潜力,为耐火材料管理和甲烷回收提供了一个有前途的解决方案,通过增强微生物代谢和种间电子转移来实现。这项研究,因此,深入研究了MES在修复被混合MPs污染的废水中的功能影响和微生物对MES的反应。结果表明,混合MPs可以抑制甲烷产生(-52.38%)和物质去除(-26.59%),MES可以有效减轻这种抑制作用(-22.86%,-19.01%)。同时,MES还促进了对电子转移至关重要的酶活性,如细胞色素C和烟酰胺腺嘌呤二核苷酸(NADH),以及与能量代谢相关的三磷酸腺苷(ATP)。此外,MES增强了微生物对混合MPs的抵抗力,胞外聚合物(EPS)的增加证明了这一点,尽管活性氧(ROS)的产生和乳酸脱氢酶(LDH)的释放略有增加。相应地,电刺激促进了与发酵相关的功能性微生物的富集,醋酸盐生产,产电,和产甲烷,并刺激与甲烷代谢相关的基因表达水平升高。值得注意的是,甲烷介导的乙酰碎屑途径成为主要的产甲烷途径,由甲烷杆菌驱动的氢营养途径成功。最后,该研究强调了施加电压和载体在能量代谢和物质运输中的支持作用,与产甲烷有关。总的来说,MES在减轻由混合MPs暴露引起的生物毒性以及增强厌氧废水处理和甲烷回收方面表现出功效。
    The presence of mixed microplastics (MPs) in anaerobic wastewater treatment processes has been shown to impede fermentation performance by suppressing microbial activity. Microbial electrosynthesis (MES), with its extensive potential, offers a promising solution for refractory substances management and methane recovery, achieved through the enhancement of microbial metabolism and interspecies electron transfer. This study, therefore, delves into the functional impacts and the microbial response to MES in the remediation of wastewater contaminated with mixed-MPs. Results indicated that mixed-MPs could inhibit methane production (-52.38%) and substance removal (-26.59%), and MES could effectively mitigate this inhibitory effect (-22.86%, -19.01%). Concurrently, MES also boosts enzymatic activities pivotal for electron transfer, such as cytochrome c and nicotinamide adenine dinucleotide (NADH), as well as those linked to energy metabolism like adenosine triphosphate (ATP). Furthermore, MES bolsters microbial resistance to mixed-MPs, as evidenced by an increase in extracellular polymeric substances (EPS), albeit with a minor rise in reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) release. Correspondingly, electric stimulation promoted the enrichment of functional microorganisms associated with fermentation, acetate production, electrogenesis, and methanogenesis, and stimulated elevated expression levels of genes related to methane metabolism. Notably, the Methanothrix-mediated acetoclastic pathway emerges as the predominant methanogenic route, succeeded by the Methanobacterium-driven hydrogenotrophic pathway. Lastly, the study underscores the supportive role of applied voltage and carriers in energy metabolism and substance transport, which are associated with methanogenesis. Overall, MES demonstrates efficacy in mitigating the biotoxicity induced by mixed-MPs exposure and in enhancing anaerobic wastewater treatment and methane recovery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    碳基产品对社会至关重要,然而,从化石燃料生产它们是不可持续的。微生物具有从固体电极吸收电子并将二氧化碳(CO2)转化为有价值的碳基化学品的能力。然而,需要更高的生产率和能源效率来实现可以使技术变革性的生存能力。这里,我们展示了定向流通电化学系统中基于生物膜的微生物多孔阴极如何在248天内将CO2连续还原为偶数链C2-C6羧酸。我们展示了三倍高的生物膜浓度,体积电流密度,和生产力与最先进的水平相比。最值得注意的是,体积生产率(VP)类似于实验室规模和工业合成气(CO-H2-CO2)发酵和链延长发酵中实现的生产率。这项工作突出了有效的电力驱动微生物二氧化碳减排的关键设计参数。存在改进电极定殖和微生物特异性动力学的速率以扩大该技术的需要和空间。
    Carbon-based products are essential to society, yet producing them from fossil fuels is unsustainable. Microorganisms have the ability to take up electrons from solid electrodes and convert carbon dioxide (CO2) to valuable carbon-based chemicals. However, higher productivities and energy efficiencies are needed to reach a viability that can make the technology transformative. Here, we show how a biofilm-based microbial porous cathode in a directed flow-through electrochemical system can continuously reduce CO2 to even-chain C2-C6 carboxylic acids over 248 days. We demonstrate a threefold higher biofilm concentration, volumetric current density, and productivity compared with the state of the art. Most notably, the volumetric productivity (VP) resembles those achieved in laboratory-scale and industrial syngas (CO-H2-CO2) fermentation and chain elongation fermentation. This work highlights key design parameters for efficient electricity-driven microbial CO2 reduction. There is need and room to improve the rates of electrode colonization and microbe-specific kinetics to scale up the technology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    能够从固体电极接受电子的阴极电活性细菌(C-EAB)为去除污染物提供了新的途径。生物传感器设计和电合成。这篇综述系统地总结了C-EAB在过去十年中的新兴应用。包括1)去除硝酸盐,芳香衍生物和金属离子;2)基于生物阴极的生物传感;3)CH4,H2,有机碳,NH3和蛋白质。此外,还对C-EAB的电子转移机理进行了分类和总结。介绍了胞外电子转移和种间电子转移,以及典型C-EAB的电子传输机制,如ShewanellaoneidenisMR-1,已经详细梳理。通过揭露C-EAB的这个尖端区域,这篇综述旨在激发更多的兴趣和研究,不仅探索这些电子接受细菌的巨大潜在应用,而且还开发了利用生物阴极的稳定和可扩展的过程。
    Cathodic electroactive bacteria (C-EAB) which are capable of accepting electrons from solid electrodes provide fresh avenues for pollutant removal, biosensor design, and electrosynthesis. This review systematically summarized the burgeoning applications of the C-EAB over the past decade, including 1) removal of nitrate, aromatic derivatives, and metal ions; 2) biosensing based on biocathode; 3) electrosynthesis of CH4, H2, organic carbon, NH3, and protein. In addition, the mechanisms of electron transfer by the C-EAB are also classified and summarized. Extracellular electron transfer and interspecies electron transfer have been introduced, and the electron transport mechanism of typical C-EAB, such as Shewanella oneidensis MR-1, has been combed in detail. By bringing to light this cutting-edge area of the C-EAB, this review aims to stimulate more interest and research on not only exploring great potential applications of these electron-accepting bacteria, but also developing steady and scalable processes harnessing biocathodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    甲醇是用于生物基经济的有前途的原料,因为它可以衍生自有机废物流或电化学地从CO2产生。微生物电合成(MES)中CO2生产乙酸盐已被广泛研究,而更有价值的化合物如丁酸盐目前正引起人们的注意。在这项研究中,使用甲醇作为与CO2的共底物以增强MES中的丁酸盐产生。用CO2和甲醇进料导致最高的丁酸生产速率和滴度分别为0.36±0.01gL-1d-1和8.6±0.2gL-1,仅进料CO2的反应器表现优异(分别为0.20±0.03gL-1d-1和5.2±0.1gL-1)。甲醇作为电子供体和碳源,两者都贡献了CA。产品中50%的碳。真杆菌是优势属,相对丰度为52.6±2.5%。因此,我们展示了使用C1底物的有吸引力的路线,CO2和甲醇,主要生产丁酸。关键点:•丁酸酯是MES中甲醇和CO2的主要产物。•甲醇在MES中同时充当碳源和电子源。
    Methanol is a promising feedstock for the bio-based economy as it can be derived from organic waste streams or produced electrochemically from CO2. Acetate production from CO2 in microbial electrosynthesis (MES) has been widely studied, while more valuable compounds such as butyrate are currently attracting attention. In this study, methanol was used as a co-substrate with CO2 to enhance butyrate production in MES. Feeding with CO2 and methanol resulted in the highest butyrate production rates and titres of 0.36 ± 0.01 g L-1 d-1 and 8.6 ± 0.2 g L-1, respectively, outperforming reactors with only CO2 feeding (0.20 ± 0.03 g L-1 d-1 and 5.2 ± 0.1 g L-1, respectively). Methanol acted as electron donor and as carbon source, both of which contributed ca. 50% of the carbon in the products. Eubacterium was the dominant genus with 52.6 ± 2.5% relative abundance. Thus, we demonstrate attractive route for the use of the C1 substrates, CO2 and methanol, to produce mainly butyrate. KEY POINTS: • Butyrate was the main product from methanol and CO2 in MES • Methanol acted as both carbon and electron source in MES • Eubacterium dominating microbial culture was enriched in MES.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    微生物电合成(MES)细胞利用微生物将二氧化碳转化为有价值的化学产物,如甲烷和乙酸盐的能力,但是高的化学生产速率可能需要由氢气介导,因此需要用于析氢反应(HER)的催化剂。为了避免使用贵金属催化剂,并检查催化剂对电极上微生物产生甲烷的速率的影响,我们使用涂覆有NiMo/C的碳毡阴极,并将性能与裸露的碳毡或Pt/C沉积的阴极进行比较。开发了包含阳离子交换膜的零间隙配置,以产生低内阻,限制pH变化,并增强H2直接运输到生物阴极上的微生物。在相对于Ag/AgCl为-1V的固定阴极电位下,NiMo/C生物阴极可实现23±4A/m2的电流密度和4.7±1.0L/L-d的高甲烷生产率。这种性能与使用贵金属催化剂(Pt/C,23±6A/m2,5.4±2.8L/L-d),比普通碳阴极高3-5倍(8±3A/m2,1.0±0.4L/L-d)。NiMo/C生物阴极运行超过120天,没有可观察到的衰变或严重的阴极催化剂浸出,基于稳态条件下的甲烷产量,平均库仑效率达到53±9%。对生物阴极微生物群落的分析揭示了氢营养型甲烷杆菌属的优势(〜40%),不同材料的生物阴极没有发现显著差异。这些结果表明,HER催化剂通过促进氢气释放到附着的生物膜来提高甲烷生成速率,并且使用非贵金属催化剂和零间隙电池设计,在MES中长期提高甲烷产量是可行的。
    Microbial electrosynthesis (MES) cells exploit the ability of microbes to convert CO2 into valuable chemical products such as methane and acetate, but high rates of chemical production may need to be mediated by hydrogen and thus require a catalyst for the hydrogen evolution reaction (HER). To avoid the usage of precious metal catalysts and examine the impact of the catalyst on the rate of methane generation by microbes on the electrode, we used a carbon felt cathode coated with NiMo/C and compared performance to a bare carbon felt or a Pt/C-deposited cathode. A zero-gap configuration containing a cation exchange membrane was developed to produce a low internal resistance, limit pH changes, and enhance direct transport of H2 to microorganisms on the biocathode. At a fixed cathode potential of -1 V vs Ag/AgCl, the NiMo/C biocathode enabled a current density of 23 ± 4 A/m2 and a high methane production rate of 4.7 ± 1.0 L/L-d. This performance was comparable to that using a precious metal catalyst (Pt/C, 23 ± 6 A/m2, 5.4 ± 2.8 L/L-d), and 3-5 times higher than plain carbon cathodes (8 ± 3 A/m2, 1.0 ± 0.4 L/L-d). The NiMo/C biocathode was operated for over 120 days without observable decay or severe cathode catalyst leaching, reaching an average columbic efficiency of 53 ± 9 % based on methane production under steady state conditions. Analysis of microbial community on the biocathode revealed the dominance of the hydrogenotrophic genus Methanobacterium (∼40 %), with no significant difference found for biocathodes with different materials. These results demonstrated that HER catalysts improved rates of methane generation through facilitating hydrogen gas evolution to an attached biofilm, and that the long-term enhancement of methane production in MES was feasible using a non-precious metal catalyst and a zero-gap cell design.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    微生物将CO2转化为多碳化合物如乙酸盐和丁酸盐是一种有前途的增值技术。对于这些反应,氢的电化学供应给生物催化剂是一种可行的方法。早些时候,我们已经表明,来自微生物生长介质的痕量金属自发形成原位电催化剂,用于析氢。这里,我们显示了这种基于金属混合物的HER催化剂的成功整合的生物相容性,用于立即启动微生物乙酸生成(CO2至乙酸盐)。此外,正丁酸盐的形成开始很快(20天后)。氢总是过量产生,尽管生产率在36到50天内下降,可能是由于金属从阴极浸出。HER催化剂在两步微生物群落生物过程中提高了微生物的生产率:BRH-c20a菌株的乙酸生成和敏感梭菌12(相关)物种的乙酸向正丁酸酯的延长。这些发现提供了整合分别显示生物和电化学相容性的电催化剂和微生物的新途径。
    Microbial conversion of CO2 to multi-carbon compounds such as acetate and butyrate is a promising valorisation technique. For those reactions, the electrochemical supply of hydrogen to the biocatalyst is a viable approach. Earlier we have shown that trace metals from microbial growth media spontaneously form in situ electro-catalysts for hydrogen evolution. Here, we show biocompatibility with the successful integration of such metal mix-based HER catalyst for immediate start-up of microbial acetogenesis (CO2 to acetate). Also, n-butyrate formation started fast (after twenty days). Hydrogen was always produced in excess, although productivity decreased over the 36 to 50 days, possibly due to metal leaching from the cathode. The HER catalyst boosted microbial productivity in a two-step microbial community bioprocess: acetogenesis by a BRH-c20a strain and acetate elongation to n-butyrate by Clostridium sensu stricto 12 (related) species. These findings provide new routes to integrate electro-catalysts and micro-organisms showing respectively bio and electrochemical compatibility.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    微生物电合成(MES)是一种电驱动技术,可用于将CO/CO2转化为化学物质。CO独特的电子和底物特性使其成为MES的重要研究目标。然而,CO可以使阴极中毒并增加析氢反应(HER)的过电位,从而降低通过H2的电子转移速率。这项工作评估了抗COHER催化剂对MES用于CO/CO2转化的性能的影响。合成了不同煅烧温度的ZnMo-金属-有机骨架(MOF)材料。以Mo2C纳米颗粒为活性中心的ZnMo-MOF-800表现出对CO毒性的优异抗性。它还在CO气氛中获得了最高的氢析出和增强的电子转移速率。以ZnMo-MOF-800阴极和ljungdahlii梭菌为生物催化剂的MES获得0.31gL-1d-1乙酸盐收率,0.1gL-1d-1丁酸酯产量,和0.09gL-1d-12,3-丁二醇在CO/CO2中的产率,而Pt/C仅获得0.076gL-1d-1乙酸盐的产率,0.05gL-1d-1丁酸酯产率和0.02gL-1d-12,3-丁二醇产率。ZnMo-MOF-800有利于生物膜的形成,使其能够更好地抵抗CO毒性。这项工作为构建具有抗CO析氢催化剂的高效阴极以增强MES中的CO/CO2转化率提供了新的机会。
    Microbial electrosynthesis (MES) is an electrically driven technology that can be used for converting CO/CO2 into chemicals. The unique electronic and substrate properties of CO make it an important research target for MES. However, CO can poison the cathode and increase the overpotential of hydrogen evolution reaction (HER), thus reducing the electron transfer rate via H2. This work evaluated the effect of an anti-CO HER catalyst on the performance of MES for CO/CO2 conversion. ZnMo-metal-organic framework (MOF) materials with different calcination temperatures were synthesized. ZnMo-MOF-800 with Mo2C nanoparticles as active centers exhibited excellent resistance to CO toxicity. It also obtained the highest hydrogen evolution and enhanced electron transfer rate in CO atmosphere. MES with ZnMo-MOF-800 cathode and Clostridium ljungdahlii as biocatalyst obtained 0.31 g L-1 d-1 acetate yield, 0.1 g L-1 d-1 butyrate yield, and 0.09 g L-1 d-1 2,3-butanediol yield in CO/CO2, while Pt/C only get 0.076 g L-1 d-1 acetate yield, 0.05 g L-1 d-1 butyrate yield and 0.02 g L-1 d-1 2,3-butanediol yield. ZnMo-MOF-800 was conducive to biofilm formation, enabling it to better resist CO toxicity. This work provides new opportunities for constructing a highly efficient cathode with an anti-CO hydrogen evolution catalyst to enhance CO/CO2 conversion in MES.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    微生物电合成(MES)是一种有前途的CO2固定和电能储存技术。目前,MES的低电流密度限制了其实际应用。H2介导的和非生物膜驱动的MES可以在更高的电流密度下工作,但由于低的H2溶解度和差的传质,难以实现高的库仑效率(CE)。这里,我们建议通过向反应器中添加二氧化硅纳米颗粒来增强氢气的传质。在pH7,35℃和39A·m-2电流密度下,添加0.3wt%的二氧化硅纳米颗粒,反应器中H2的体积传质系数(kLa)增加了32.4%(从0.37h-1增加到0.49h-1),从而使反应器的乙酸盐产率和CE分别提高了69.8%和69.2%,分别。具有二氧化硅纳米颗粒(18.5g·L-1)的反应器中乙酸盐的滴度比没有二氧化硅纳米颗粒(11.8g·L-1)的反应器高56.9%。此外,在稳定增量阶段,含二氧化硅纳米颗粒的反应器的平均乙酸盐生产率高达2.14g·L-1·d-1,远高于其他报道的反应堆。这些结果表明,添加二氧化硅纳米颗粒是提高H2介导的MES反应器性能的有效途径。
    Microbial electrosynthesis (MES) is a promising technology for CO2 fixation and electrical energy storage. Currently, the low current density of MES limits its practical application. The H2-mediated and non-biofilm-driven MES could work under higher current density, but it is difficult to achieve high coulombic efficiency (CE) due to low H2 solubility and poor mass transfer. Here, we proposed to enhance the hydrogen mass transfer by adding silica nanoparticles to the reactor. At pH 7, 35 ℃ and 39 A·m- 2 current density, with the addition of 0.3wt% silica nanoparticles, the volumetric mass transfer coefficient (kLa) of H2 in the reactor increased by 32.4% (from 0.37 h- 1 to 0.49 h- 1), thereby increasing the acetate production rate and CE of the reactor by 69.8% and 69.2%, respectively. The titer of acetate in the reactor with silica nanoparticles (18.5 g·L- 1) was 56.9% higher than that of the reactor without silica nanoparticles (11.8 g·L- 1). Moreover, the average acetate production rate of the reactor with silica nanoparticles was up to 2.14 g·L- 1·d- 1 in the stable increment phase, which was much higher than the other reported reactors. These results demonstrated that the addition of silica nanoparticles is an effective approach to enhancing the performance of H2-mediated MES reactors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CO2电解与合成气发酵的串联应用有望实现提高的生产率和改善的产品质量。然而,合成气成分对基于混合培养的微生物链伸长的显著影响尚不清楚。此外,目前缺乏从酸性CO2电解产生具有可调节组成的合成气的有效方法。这项研究成功地证明了通过串联酸性电解与合成气发酵从CO2生产中链脂肪酸。CO可以作为唯一的能源或作为电子供体(当与乙酸盐共同进料时)用于生成己酸盐。此外,气体扩散电极结构工程的结果突出表明,使用炭黑,单独或与石墨结合使用,通过酸性CO2电解(pH1)可调节的组成,能够产生一致的合成气。炭黑层显著进步了CO的选择性,从0%增加到43.5%(0.05MK+),进一步增加到92.4%(0.5MK+)。这种性能的提高归因于K+积累的促进,稳定催化活性位点,而不是为CO2转化为CO创造局部碱性环境。这项研究有助于促进可持续减少二氧化碳和化学生产的混合技术。
    The tandem application of CO2 electrolysis with syngas fermentation holds promise for achieving heightened production rates and improved product quality. However, the significant impact of syngas composition on mixed culture-based microbial chain elongation remains unclear. Additionally, effective methods for generating syngas with an adjustable composition from acidic CO2 electrolysis are currently lacking. This study successfully demonstrated the production of medium-chain fatty acids from CO2 through tandem acidic electrolysis with syngas fermentation. CO could serve as the sole energy source or as the electron donor (when cofed with acetate) for caproate generation. Furthermore, the results of gas diffusion electrode structure engineering highlighted that the use of carbon black, either alone or in combination with graphite, enabled consistent syngas generation with an adjustable composition from acidic CO2 electrolysis (pH 1). The carbon black layer significantly improved the CO selectivity, increasing from 0% to 43.5% (0.05 M K+) and further to 92.4% (0.5 M K+). This enhancement in performance was attributed to the promotion of K+ accumulation, stabilizing catalytically active sites, rather than creating a localized alkaline environment for CO2-to-CO conversion. This research contributes to the advancement of hybrid technology for sustainable CO2 reduction and chemical production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    H2驱动的微生物电合成(MES)是一种新兴的生物电化学技术,可以从CO2中生产复杂的化合物。尽管MES系统中微生物发酵的性能与H2的产率密切相关,高性能的金属H2释放催化剂(HEC)产生细胞毒性H2O2和金属阳离子从不希望的副反应,严重损害微生物。在这里,一种新颖的自解毒金属HEC设计,导致生物良性H2产生,据报道。Cu/NiMo复合材料HEC通过将O2还原动力学改变为四电子途径来抑制H2O2的析出,并随后在顺序的催化和电化学途径中分解不可避免产生的H2O2。此外,在表面原位生成的富Cu层防止NiMo腐蚀和释放细胞毒性Ni阳离子。因此,MES系统中的Cu/NiMo复合HEC在将CO2转化为生物聚合物的自养细菌CupriavidusnecatorH16的性能方面增加了50%,聚(3-羟基丁酸)。这项工作成功地证明了在设计用于生物电化学应用以及MES系统的生物相容性材料中自我解毒的概念。
    H2-driven microbial electrosynthesis (MES) is an emerging bioelectrochemical technology that enables the production of complex compounds from CO2. Although the performance of microbial fermentation in the MES system is closely related to the H2 production rate, high-performing metallic H2-evolving catalysts (HEC) generate cytotoxic H2O2 and metal cations from undesirable side reactions, severely damaging microorganisms. Herein, a novel design for self-detoxifying metallic HEC, resulting in biologically benign H2 production, is reported. Cu/NiMo composite HEC suppresses H2O2 evolution by altering the O2 reduction kinetics to a four-electron pathway and subsequently decomposes the inevitably generated H2O2 in sequential catalytic and electrochemical pathways. Furthermore, in situ generated Cu-rich layer at the surface prevents NiMo from corroding and releasing cytotoxic Ni cations. Consequently, the Cu/NiMo composite HEC in the MES system registers a 50% increase in the performance of lithoautotrophic bacterium Cupriavidus necator H16, for the conversion of CO2 to a biopolymer, poly(3-hydroxybutyrate). This work successfully demonstrates the concept of self-detoxification in designing biocompatible materials for bioelectrochemical applications as well as MES systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号