micro-LED

微型 LED
  • 文章类型: Journal Article
    在这项研究中,使用倒装芯片键合工艺制造了四种不同尺寸(5×5μm2,10×10μm2,25×25μm2,50×50μm2)的μLED阵列。研究了两种钝化工艺,一种是使用等离子体增强化学气相沉积(PECVD)沉积的单层SiO2,另一种是在SiO2层下方通过原子层沉积(ALD)沉积的Al2O3。由于优越的覆盖和保护,双层钝化工艺导致5μm芯片尺寸的μLED阵列中μLED的漏电流降低了三阶。此外,在具有双层钝化的每个芯片尺寸的μLED阵列中观察到更高的μLED光输出功率。特别是,通过双层钝化,具有5μm×5μm芯片尺寸的μLED阵列的EQE值最高为21.9%。与单层钝化的μLED阵列相比,通过引入双层钝化,μLED阵列的EQE值提高了4.4倍。最后,使用ImageJ软件通过双层钝化工艺在5μm×5μm芯片尺寸的μLED中观察到更均匀的发光模式。
    In this study, arrays of μLEDs in four different sizes (5 × 5 μm2, 10 × 10 μm2, 25 × 25 μm2, 50 × 50 μm2) were fabricated using a flip-chip bonding process. Two passivation processes were investigated with one involving a single layer of SiO2 deposited using plasma-enhanced chemical vapor deposition (PECVD) and the other incorporating Al2O3 deposited by atomic layer deposition (ALD) beneath the SiO2 layer. Owing to superior coverage and protection, the double-layers passivation process resulted in a three-order lower leakage current of μLEDs in the 5 μm chip-sized μLED arrays. Furthermore, higher light output power of μLEDs was observed in each chip-sized μLED array with double layers passivation. Particularly, the highest EQE value 21.9% of μLEDs array with 5 μm × 5 μm chip size was achieved with the double-layers passivation. The EQE value of μLEDs array was improved by 4.4 times by introducing the double-layers passivation as compared with that of μLEDs array with single layer passivation. Finally, more uniform light emission patterns were observed in the μLEDs with 5 μm × 5 μm chip size fabricated by double-layer passivation process using ImageJ software.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    微发光二极管(μLED)由于其优点而作为气体传感器的激活源获得了极大的兴趣。包括室温操作和低功耗。然而,尽管有这些好处,挑战仍然存在,如有限范围的可检测气体和缓慢的反应。在这项研究中,我们提出了一种基于SnO2纳米粒子(NPs)的蓝光μLED集成光激活气体传感器阵列,具有出色的灵敏度,可调选择性,和微瓦级功耗快速检测。在最高的气体响应下观察到μLED的最佳功率,有限差分时域仿真支持。此外,我们首先报告了使用贵金属装饰的SnO2NPs对还原气体的可见光激活选择性检测。贵金属诱导与还原气体的催化作用,明确区分NH3、H2和C2H5OH。展示了基于完全硬件实现的光激活传感阵列的实时气体监测,为光控电子鼻技术的进步开辟了新的途径。
    Micro-light-emitting diodes (μLEDs) have gained significant interest as an activation source for gas sensors owing to their advantages, including room temperature operation and low power consumption. However, despite these benefits, challenges still exist such as a limited range of detectable gases and slow response. In this study, we present a blue μLED-integrated light-activated gas sensor array based on SnO2 nanoparticles (NPs) that exhibit excellent sensitivity, tunable selectivity, and rapid detection with micro-watt level power consumption. The optimal power for μLED is observed at the highest gas response, supported by finite-difference time-domain simulation. Additionally, we first report the visible light-activated selective detection of reducing gases using noble metal-decorated SnO2 NPs. The noble metals induce catalytic interaction with reducing gases, clearly distinguishing NH3, H2, and C2H5OH. Real-time gas monitoring based on a fully hardware-implemented light-activated sensing array was demonstrated, opening up new avenues for advancements in light-activated electronic nose technologies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在这项研究中,使用金属有机化学气相沉积技术在蓝宝石衬底上生长的外延层上制造像素尺寸为10×10μm2和间距为15μm的3×3蓝色微发光二极管阵列。制造过程涉及光刻,湿法和干法蚀刻,电子束蒸发,和离子注入技术。利用砷多能量注入代替台面蚀刻进行电隔离,其中植入深度随着平均能量的增加而增加。不同的离子深度分布对电性能有不同的影响,例如正向电流和泄漏电流,可能导致对n-GaN层的损坏并增加LED的串联电阻。随着植入深度的增加,发光二极管的光输出功率和峰值外量子效率也增加了,从5.33%提高到9.82%。然而,效率下降也从46.3%增加到48.6%。
    In this study, a 3 × 3 blue micro-LED array with a pixel size of 10 × 10 μm2 and a pitch of 15 μm was fabricated on an epilayer grown on a sapphire substrate using metalorganic chemical vapor deposition technology. The fabrication process involved photolithography, wet and dry etching, E-beam evaporation, and ion implantation technology. Arsenic multi-energy implantation was utilized to replace the mesa etching for electrical isolation, where the implantation depth increased with the average energy. Different ion depth profiles had varying effects on electrical properties, such as forward current and leakage currents, potentially causing damage to the n-GaN layer and increasing the series resistance of the LEDs. As the implantation depth increased, the light output power and peak external quantum efficiency of the LEDs also increased, improving from 5.33 to 9.82%. However, the efficiency droop also increased from 46.3 to 48.6%.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    微型发光二极管(μLED),凭借其响应速度快的优势,寿命长,高亮度,和可靠性,被广泛认为是下一代显示技术的核心。然而,由于高制造成本和低外部量子效率(EQE)等问题,μLED尚未真正商业化。此外,量子点(QD)-μLED的颜色转换效率(CCE)也是其在显示行业实际应用的主要障碍。在这次审查中,我们系统地总结了纳米材料和纳米结构在μLED中的最新应用,并讨论了这些方法对提高μLED的发光效率和QD-μLED的颜色转换效率的实际效果。最后,提出了μLED商业化的挑战和未来前景。
    Micro-light-emitting diodes (μLEDs), with their advantages of high response speed, long lifespan, high brightness, and reliability, are widely regarded as the core of next-generation display technology. However, due to issues such as high manufacturing costs and low external quantum efficiency (EQE), μLEDs have not yet been truly commercialized. Additionally, the color conversion efficiency (CCE) of quantum dot (QD)-μLEDs is also a major obstacle to its practical application in the display industry. In this review, we systematically summarize the recent applications of nanomaterials and nanostructures in μLEDs and discuss the practical effects of these methods on enhancing the luminous efficiency of μLEDs and the color conversion efficiency of QD-μLEDs. Finally, the challenges and future prospects for the commercialization of μLEDs are proposed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    提出了在侧壁上具有金属-绝缘体-半导体(MIS)结构的InGaN/GaN微发光二极管(微型LED),以提高效率。在这个MIS结构中,在器件台面的涂覆有绝缘层的侧壁上,在底部的阴极和顶部的阳极之间沉积侧壁电极。台面直径为10μm的制造器件的电致发光(EL)测量表明,在侧壁电极上施加负偏压可以提高器件的外量子效率(EQE)。相比之下,正偏差的应用可以降低EQE。能带结构分析表明,EQE受到影响,因为侧壁电场的施加会沿着台面侧壁操纵局部表面电子密度,从而控制表面Shockley-Read-Hall(SRH)复合。两种建议的策略,减少绝缘体层厚度,探索替代材料,可以实施以在未来制造中进一步提高MIS微发光二极管的EQE。
    InGaN/GaN micro-light-emitting diodes (micro-LEDs) with a metal-insulator-semiconductor (MIS) structure on the sidewall are proposed to improve efficiency. In this MIS structure, a sidewall electrode is deposited on the insulating layer-coated sidewall of the device mesa between a cathode on the bottom and an anode on the top. Electroluminescence (EL) measurements of fabricated devices with a mesa diameter of 10 μm show that the application of negative biases on the sidewall electrode can increase the device external quantum efficiency (EQE). In contrast, the application of positive biases can decrease the EQE. The band structure analysis reveals that the EQE is impacted because the application of sidewall electric fields manipulates the local surface electron density along the mesa sidewall and thus controls surface Shockley-Read-Hall (SRH) recombination. Two suggested strategies, reducing insulator layer thickness and exploring alternative materials, can be implemented to further improve the EQE of MIS micro-LEDs in future fabrication.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Micro-LED被认为是一种新兴的显示技术,具有高分辨率的巨大潜力,亮度,和显示应用中的能源效率。然而,其不断减小的像素尺寸和复杂的制造工艺为其与驱动单元的集成带来了挑战。最近,研究人员提出了多种方法来实现微结构与驱动单元的高度集成。研究人员利用晶体管的高性能来实现低功耗,高电流增益,和快速响应频率。本文回顾了最近关于微型LED与不同类型晶体管的新集成方法的研究,包括与BJT的集成,HEMT,TFT,和MOSFET。
    Micro-LED is considered an emerging display technology with significant potential for high resolution, brightness, and energy efficiency in display applications. However, its decreasing pixel size and complex manufacturing process create challenges for its integration with driving units. Recently, researchers have proposed various methods to achieve highly integrated micro-structures with driving unit. Researchers take advantage of the high performance of the transistors to achieve low power consumption, high current gain, and fast response frequency. This paper gives a review of recent studies on the new integration methods of micro-LEDs with different types of transistors, including the integration with BJT, HEMT, TFT, and MOSFET.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    红色钙钛矿纳米晶体(PeNCs)缺乏稳定性仍然是限制其图案化应用的主要问题。在这项工作中,在高压电流体动力学(EHD)喷墨打印过程中,引入了双配体钝化策略来稳定PeNCs并抑制其卤素离子迁移。与在EHD喷墨打印期间在高电场下具有其他钝化策略的样品相比,所打印的红色阵列表现出最高的发射子强度和最小的蓝移。结合蓝色和绿色的PeNC油墨,成功印刷了单色和三色颜色转换层阵列,最小像素尺寸为5μm,最高空间分辨率为2540dpi。CsPbBrI2NC阵列的颜色坐标位于红点附近,颜色为97.28%的Rec。2020年标准。所有这些在近眼微型LED显示器中的颜色转换层的应用中显示出巨大的潜力。
    The lack of stability of red perovskite nanocrystals (PeNCs) remains the main problem that restricts their patterning application. In this work, the dual-ligand passivation strategy was introduced to stabilize PeNCs and inhibit their halogen ion migration during high-voltage electrohydrodynamic (EHD) inkjet printing. The as-printed red arrays exhibit the highest emisson intensity and least blue shift compared with samples with other passivation strategies under a high electric field during EHD inkjet printing. Combining with blue and green PeNC inks, single-color and tricolor color conversion layer arrays were successfully printed, with minimum pixel size of 5 μm and the highest spatial resolution of 2540 dpi. The color coordinate of CsPbBrI2 NCs arrays are located close to the red point, with a color gumat of 97.28% of Rec. 2020 standard. All of these show great potential in the application of color conversion layers in a near-eye micro-LED display.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Micro-LED阵列显示高亮度,寿命长,低功耗,和快速的响应速度。在本文中,通过在蓝宝石衬底上使用具有多量子阱外延的氮化物层,我们已经提出了一种串联偏置的微型LED阵列。用作微型LED活性材料的III族氮化物多量子阱实现发光和检测功能。微型LED阵列结合了照明,检测,和沟通能力。我们在照明和检测模式下对微型LED阵列的光电特性进行了全面分析。我们还探索了串联偏置阵列内单个微型LED器件的不同布置的可见光通信性能。我们的研究使用微型LED阵列通过可见光通信实现720p视频传输,支持高达10Mbps的通信速率。我们的贡献包括成功集成照明和检测功能,以及对光电和通信性能的全面评估。这项研究强调了多功能微型LED阵列作为可见光通信系统中收发器终端的潜力,将其应用从智能照明扩展到可见光通信和光子集成芯片。这些创新增强了我们对微型LED技术及其多功能应用的理解。
    Micro-LED arrays exhibit high brightness, a long lifespan, low power consumption, and a fast response speed. In this paper, we have proposed a series-biased micro-LED array by using a nitride layer with multi-quantum wells epitaxial on sapphire substrate. The III-nitride multiple quantum wells serving as the micro-LED active material enable both luminescence and detection functionalities. The micro-LED array combines lighting, detection, and communication capabilities. We have conducted a thorough analysis of the micro-LED array\'s optoelectronic features in both lighting and detection modes. We also explore visible light communication performance across different arrangements of single micro-LED devices within the series-biased array. Our research achieves 720p video transmission via visible light communication using the micro-LED array, supporting a communication rate of up to 10 Mbps. Our contributions encompass the successful integration of lighting and detection functions and a comprehensive assessment of optoelectronic and communication performance. This study highlights the multifunctional micro-LED array\'s potential as a transceiver terminal in visible light communication systems, expanding its applications from smart lighting to visible light communication and photonic integrated chips. These innovations enhance our understanding of micro-LED technology and its versatile applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自动对焦技术在Micro-LED晶圆缺陷检测系统中占有重要地位。如何在较大的线性范围内准确测量Micro-LED晶圆样品的散焦量和散焦方向是实现晶圆缺陷检测的关键之一。在本文中,提出了一种基于矩形振幅掩模的大范围高精度自动对焦方法。使用没有长边的矩形振幅掩模来调制入射激光束的形状,使得反射激光束在传感器上的光斑形状分布随着晶片样品的散焦量而改变。通过计算光斑的形状,可以同时获得散焦量和散焦方向。实验结果表明,在20×显微镜物镜下,自动对焦系统的线性范围为480μm,精度可达1μm。可见,本文提出的自动调焦方法具有线性范围大的优点,精度高,结构紧凑,能够满足Micro-LED晶圆缺陷检测设备的要求。
    Auto-focus technology plays an important role in the Micro-LED wafer defects detection system. How to accurately measure the defocus amount and the defocus direction of the Micro-LED wafer sample in a large linear range is one of the keys to realizing wafer defects detection. In this paper, a large range and high-precision auto-focus method based on a rectangular amplitude mask is proposed. A rectangular amplitude mask without a long edge is used to modulate the shape of the incident laser beams so that the spot shape distribution of the reflected laser beam on the sensor changes with the defocus amount of the wafer sample. By calculating the shape of the light spots, the defocus amount and the defocus direction can be obtained at the same time. The experimental results show that under the 20× microscopy objective, the linear range of the auto-focus system is 480 μm and the accuracy can reach 1 μm. It can be seen that the automatic focusing method proposed in this paper has the advantages of large linear range, high accuracy, and compact structure, which can meet the requirements of the Micro-LED wafer defects detection equipment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于量子点(QD)的RGB微发光二极管(μ-LED)技术显示出实现全彩显示的巨大潜力。在这项研究中,我们提出了一种新颖的结构设计,结合了蓝色和量子阱(QW)-混合紫外(UV)-混合μ-LED,以实现高颜色转换效率(CCE)。第一次,QD和TiO2浓度的各种组合的影响,以及光致发光效率(PLQY)的厚度变化,已经通过模拟进行了系统的检查。作为这些模拟的结果,高效的颜色转换层(CCL)已被成功制造,从而显著节省时间和材料成本。通过在CCL中加入TiO2的散射颗粒,我们成功地散射光和分散量子点,有效减少自聚集,大大提高照明均匀性。此外,这种设计显著增强了QD膜内的光吸收。为了提高器件的可靠性,我们在CCL表面上引入了使用低温原子层沉积(ALD)技术的钝化保护层。此外,我们实现了令人印象深刻的CCE值96.25%和92.91%的红色和绿色CCL,分别,通过集成改进的分布式布拉格反射器(DBR)来抑制光泄漏。我们的混合结构设计,结合光学模拟系统,不仅有助于快速获取最佳参数,以在μ-LED显示器中进行高度均匀和高效的颜色转换,而且还扩大了色域,在国家电视标准委员会(NTSC)领域达到128.2%,在Rec中达到95.8%。2020年标准。实质上,这项研究概述了开发定制产品的有希望的途径,高性能μ-LED显示屏。
    Quantum dot (QD)-based RGB micro light-emitting diode (μ-LED) technology shows immense potential for achieving full-color displays. In this study, we propose a novel structural design that combines blue and quantum well (QW)-intermixing ultraviolet (UV)-hybrid μ-LEDs to achieve high color-conversion efficiency (CCE). For the first time, the impact of various combinations of QD and TiO2 concentrations, as well as thickness variations on photoluminescence efficiency (PLQY), has been systematically examined through simulation. High-efficiency color-conversion layer (CCL) have been successfully fabricated as a result of these simulations, leading to significant savings in time and material costs. By incorporating scattering particles of TiO2 in the CCL, we successfully scatter light and disperse QDs, effectively reducing self-aggregation and greatly improving illumination uniformity. Additionally, this design significantly enhances light absorption within the QD films. To enhance device reliability, we introduce a passivation protection layer using low-temperature atomic layer deposition (ALD) technology on the CCL surface. Moreover, we achieve impressive CCE values of 96.25% and 92.91% for the red and green CCLs, respectively, by integrating a modified distributed Bragg reflector (DBR) to suppress light leakage. Our hybrid structure design, in combination with an optical simulation system, not only facilitates rapid acquisition of optimal parameters for highly uniform and efficient color conversion in μ-LED displays but also expands the color gamut to achieve 128.2% in the National Television Standards Committee (NTSC) space and 95.8% in the Rec. 2020 standard. In essence, this research outlines a promising avenue towards the development of bespoke, high-performance μ-LED displays.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号