metatranscriptomics

metatranscriptomics
  • 文章类型: Journal Article
    在南海沿海进行的为期两年的全面调查提高了我们对群落和基因组水平的海洋微生物的理解。通过结合宏基因组学和超转录组学,我们揭示了微生物群落和浮游植物宏基因组组装基因组(MAG)对环境波动的复杂时间动态和显着适应性。我们观察到微生物群落组成和功能的明显季节性变化:在温暖的月份,蓝细菌占优势。而光合原生生物在较冷的季节更为丰富。值得注意的是,光合作用的代谢标记KOs全年持续活跃,强调这些过程的持续作用,而不考虑季节性变化。我们的分析表明,温度等环境参数,盐度,和硝酸盐浓度深刻地影响微生物群落组成,而温度和硅酸盐已成为影响其功能特性的关键因素。通过对37种浮游植物MAGs的回收和分析,包括9个来自不同门的原核蓝细菌和28个真核生物,我们已经深入了解了它们的遗传多样性和代谢能力。光合作用相关途径的不同特征,包括碳固定,类胡萝卜素生物合成,光合作用天线蛋白,MAG之间的光合作用表明它们对不断变化的环境条件的遗传适应。这项研究不仅增强了我们对沿海海洋生态系统中微生物动态的理解,而且还揭示了不同微生物群体对环境变化的生态作用和适应性反应。
    This comprehensive two-year investigation in the coastal South China Sea has advanced our understanding of marine microbes at both community and genomic levels. By combining metagenomics and metatranscriptomics, we have revealed the intricate temporal dynamics and remarkable adaptability of microbial communities and phytoplankton metagenome-assembled genomes (MAGs) in response to environmental fluctuations. We observed distinct seasonal shifts in microbial community composition and function: cyanobacteria were predominant during warmer months, whereas photosynthetic protists were more abundant during colder seasons. Notably, metabolic marker KOs of photosynthesis were consistently active throughout the year, underscoring the persistent role of these processes irrespective of seasonal changes. Our analysis reveals that environmental parameters such as temperature, salinity, and nitrate concentrations profoundly influence microbial community composition, while temperature and silicate have emerged as crucial factors shaping their functional traits. Through the recovery and analysis of 37 phytoplankton MAGs, encompassing nine prokaryotic cyanobacteria and 28 eukaryotic protists from diverse phyla, we have gained insights into their genetic diversity and metabolic capabilities. Distinct profiles of photosynthesis-related pathways including carbon fixation, carotenoid biosynthesis, photosynthesis-antenna proteins, and photosynthesis among the MAGs indicated their genetic adaptations to changing environmental conditions. This study not only enhances our understanding of microbial dynamics in coastal marine ecosystems but also sheds light on the ecological roles and adaptive responses of different microbial groups to environmental changes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    异常的早产儿肠道微生物群组装容易导致早期生活障碍和持续的健康问题。这里,我们对在3个新生儿重症监护病房住院的236名早产儿在出生后的前3个月内的肠道微生物组动态进行了分析,我们使用了2,512个粪便的鸟枪宏基因组学和1,381个粪便的转移组学.应变跟踪,分类学和功能分析,和全面的临床元数据识别肠杆菌科,肠球菌,和葡萄球菌主要利用可用的生态位填充肠道微生物组。艰难梭菌谱系在单个中心的个体之间持续存在,和表皮葡萄球菌谱系持续存在,出乎意料的是,中心之间。总的来说,与母体或基线变量相比,抗生素和非抗生素药物对肠道微生物组组成的影响更大.最后,我们在出生后第40天发生坏死性小肠结肠炎的新生儿中发现了持续的低多样性肠道微生物组.总的来说,我们全面描述了肠道微生物组动态,以应对早产的医疗干预,住院新生儿。
    Aberrant preterm infant gut microbiota assembly predisposes to early-life disorders and persistent health problems. Here, we characterize gut microbiome dynamics over the first 3 months of life in 236 preterm infants hospitalized in three neonatal intensive care units using shotgun metagenomics of 2,512 stools and metatranscriptomics of 1,381 stools. Strain tracking, taxonomic and functional profiling, and comprehensive clinical metadata identify Enterobacteriaceae, enterococci, and staphylococci as primarily exploiting available niches to populate the gut microbiome. Clostridioides difficile lineages persist between individuals in single centers, and Staphylococcus epidermidis lineages persist within and, unexpectedly, between centers. Collectively, antibiotic and non-antibiotic medications influence gut microbiome composition to greater extents than maternal or baseline variables. Finally, we identify a persistent low-diversity gut microbiome in neonates who develop necrotizing enterocolitis after day of life 40. Overall, we comprehensively describe gut microbiome dynamics in response to medical interventions in preterm, hospitalized neonates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    转录组学是RNA转录本的研究,基因组被转录的部分,在一个特定的细胞中,组织,或有机体。转录组学提供了对基因表达模式的洞察,regulation,以及细胞过程的潜在机制。社区转录组学通过研究来自生物体环境组装的RNA转录本,目的是更好地了解社区成员之间的互动。群落转录组学需要从多种生物体中成功提取RNA,并通过将这些读段映射到参考基因组或读段的从头组装进行后续分析。两者,提取协议和分析步骤可能会给社区转录组学带来障碍。这篇综述涵盖了转录组学技术的进展,并评估了将其应用于社区转录组学的可行性。
    Transcriptomics is the study of RNA transcripts, the portion of the genome that is transcribed, in a specific cell, tissue, or organism. Transcriptomics provides insight into gene expression patterns, regulation, and the underlying mechanisms of cellular processes. Community transcriptomics takes this a step further by studying the RNA transcripts from environmental assemblies of organisms, with the intention of better understanding the interactions between members of the community. Community transcriptomics requires successful extraction of RNA from a diverse set of organisms and subsequent analysis via mapping those reads to a reference genome or de novo assembly of the reads. Both, extraction protocols and the analysis steps can pose hurdles for community transcriptomics. This review covers advances in transcriptomic techniques and assesses the viability of applying them to community transcriptomics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    来自肠道发酵的甲烷排放在全球范围内提出了双重挑战:它们不仅对大气温室气体有显著贡献,而且对反刍动物来说也是相当大的能量损失。利用高通量组学技术分析瘤胃微生物组样本(meta-omics,即,宏基因组学,metatranscriptomics,元蛋白质组学,代谢组学)具有揭示饮食之间复杂相互作用的巨大潜力,微生物群,和这些动物的甲烷排放。主要障碍是有效整合各种元组学方法及其在不同反刍动物物种中的广泛应用。遗传变异显著影响反刍动物的甲烷产量,表明基因组选择可能是减少排放的可行策略。虽然已经对甲烷生产的微生物方面进行了大量研究,目前仍迫切需要描述宿主与其微生物组之间的特定遗传相互作用。元组学技术的进步有望揭示这些相互作用,加强我们对控制甲烷输出的遗传因素的理解。这篇综述探讨了元组学加速基因进步的潜力,这可能导致反刍动物甲烷排放减少。通过采用系统生物学方法,各种组学技术的整合允许识别与甲烷产生相关的关键基因组区域和遗传标记。然后可以在选择性育种程序中利用这些标记来培养与较低排放相关的性状。此外,这篇综述解决了目前在应用基因组选择方面面临的挑战,并讨论了组学技术如何克服这些障碍。对不同生物学数据的系统整合和分析为反刍动物甲烷生产性状的遗传基础和整体生物学提供了更深入的见解。最终,这种综合方法不仅有助于减少农业对环境的影响,而且有助于畜牧业管理的可持续性和效率。
    Methane emissions from enteric fermentation present a dual challenge globally: they not only contribute significantly to atmospheric greenhouse gases but also represent a considerable energy loss for ruminant animals. Utilizing high-throughput omics technologies to analyze rumen microbiome samples (meta-omics, i.e., metagenomics, metatranscriptomics, metaproteomics, metabolomics) holds vast potential for uncovering the intricate interplay between diet, microbiota, and methane emissions in these animals. The primary obstacle is the effective integration of diverse meta-omic approaches and their broader application across different ruminant species. Genetic variability significantly impacts methane production in ruminants, suggesting that genomic selection could be a viable strategy to reduce emissions. While substantial research has been conducted on the microbiological aspects of methane production, there remains a critical need to delineate the specific genetic interactions between the host and its microbiome. Advancements in meta-omics technologies are poised to shed light on these interactions, enhancing our understanding of the genetic factors that govern methane output. This review explores the potential of meta-omics to accelerate genetic advancements that could lead to reduced methane emissions in ruminants. By employing a systems biology approach, the integration of various omics technologies allows for the identification of key genomic regions and genetic markers linked to methane production. These markers can then be leveraged in selective breeding programs to cultivate traits associated with lower emissions. Moreover, the review addresses current challenges in applying genomic selection for this purpose and discusses how omics technologies can overcome these obstacles. The systematic integration and analysis of diverse biological data provide deeper insights into the genetic underpinnings and overall biology of methane production traits in ruminants. Ultimately, this comprehensive approach not only aids in reducing the environmental impact of agriculture but also contributes to the sustainability and efficiency of livestock management.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    坏死病原体灰霉病菌与葡萄浆果之间相互作用的复杂性(Vitisviniferaspp。)可能导致首选的贵族腐烂(NR)或亏损的灰腐病(GR)的形成,取决于当时的气候条件。在这项研究中,我们通过进行多维缩放,然后进行差异表达和富集分析,专注于V.vinifera的功能基因集。这项研究的目的是确定葡萄浆果在灰腐病阶段的基因表达差异,高贵的腐烂,和发展腐烂(DR,在早期阶段)。发现NR阶段的葡萄转录组与DR和GR阶段的葡萄转录组具有显着差异,表现出强烈的相似性。同样,几种植物防御相关途径,包括植物-病原体相互作用,因为发现了超敏的植物反应。分析的结果确定了潜在的植物应激反应途径(SGT1激活的超敏反应),该途径在GR浆果中被上调,但在NR浆果中被下调。该研究表明,在NR阶段,葡萄弧菌基因中与防御相关的基因减少,具有高度的功能可变性,特别是在富集途径中。这表明该植物没有积极防御灰霉病,否则在其表面上存在高生物量。这种差异强调了在NR阶段,葡萄和病原真菌在平衡状态下相互作用。相反,葡萄孢菌感染的初始阶段表现为有毒的真菌-植物相互作用,不管结果是灰色还是高贵的腐烂。
    The complexity of the interaction between the necrotrophic pathogen Botrytis cinerea and grape berries (Vitis vinifera spp.) can result in the formation of either the preferred noble rot (NR) or the loss-making grey rot (GR), depending on the prevailing climatic conditions. In this study, we focus on the functional gene set of V. vinifera by performing multidimensional scaling followed by differential expression and enrichment analyses. The aim of this study is to identify the differences in gene expression between grape berries in the phases of grey rot, noble rot, and developing rot (DR, in its early stages) phases. The grapevine transcriptome at the NR phase was found to exhibit significant differences from that at the DR and GR stages, which displayed strong similarities. Similarly, several plant defence-related pathways, including plant-pathogen interactions as hypersensitive plant responses were found to be enriched. The results of the analyses identified a potential plant stress response pathway (SGT1 activated hypersensitive response) that was found to be upregulated in the GR berry but downregulated in the NR berry. The study revealed a decrease in defence-related in V. vinifera genes during the NR stages, with a high degree of variability in functions, particularly in enriched pathways. This indicates that the plant is not actively defending itself against Botrytis cinerea, which is otherwise present on its surface with high biomass. This discrepancy underscores the notion that during the NR phase, the grapevine and the pathogenic fungi interact in a state of equilibrium. Conversely the initial stages of botrytis infection manifest as a virulent fungus-plant interaction, irrespective of whether the outcome is grey or noble rot.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本研究使用16SrRNA基因测序和超转录组学分析来全面说明氨胁迫如何影响中链脂肪酸(MCFA)的生物合成。在总氨氮(TAN)浓度高于1000mgN/L时,MCFA合成受到抑制。TAN胁迫阻碍了有机水解,酸化,和挥发性脂肪酸伸长。链延长细菌(例如,梭状芽孢杆菌_sensu_stricto_12,梭状芽孢杆菌_sensu_stricto_1,Caprociproducens)丰度保持不变,但是他们的活动减少了,部分是由于活性氧的增加。代谢组学分析显示,在TAN胁迫下,对MCFA生产至关重要的酶活性降低。脂肪酸生物合成途径而不是反向β-氧化途径主要有助于MCFA的产生,并在TAN压力下受到抑制。功能种群可能通过渗透保护剂的产生和钾摄取调节来维持渗透压,从而在TAN胁迫中幸存下来。NADH-泛醌氧化还原酶可能补偿ATP损失。这项研究增强了对TAN胁迫下MCFA生物合成的理解,协助MCFA生产系统的稳定性和效率的提高。
    This study used 16S rRNA gene sequencing and metatranscriptomic analysis to comprehensively illustrate how ammonia stress influenced medium-chain fatty acids (MCFA) biosynthesis. MCFA synthesis was inhibited at total ammonia nitrogen (TAN) concentrations above 1000 mg N/L. TAN stress hindered organic hydrolysis, acidification, and volatile fatty acids elongation. Chain-elongating bacteria (e.g., Clostridium_sensu_stricto_12, Clostridium_sensu_stricto_1, Caproiciproducens) abundance remained unchanged, but their activity decreased, partially due to the increased reactive oxygen species. Metatranscriptomic analysis revealed reduced activity of enzymes critical for MCFA production under TAN stress. Fatty acid biosynthesis pathway rather than reverse β-oxidation pathway primarily contributed to MCFA production, and was inhibited under TAN stress. Functional populations likely survived TAN stress through osmoprotectant generation and potassium uptake regulation to maintain osmotic pressure, with NADH-ubiquinone oxidoreductase potentially compensating for ATP loss. This study enhances understanding of MCFA biosynthesis under TAN stress, aiding MCFA production system stability and efficiency improvement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    元组学数据的分析需要利用几种生物信息学工具和熟练的信息学。多个元组学数据的整合更具挑战性,现有生物信息学解决方案的输出并不总是容易解释。这里,我们提出了一个元组学生物信息学管道,用于社区分析的元组学软件(MOSCA),旨在克服这些限制。MOSCA最初是为分析宏基因组学(MG)和超转录组学(MT)数据而开发的。现在,它还进行MG和元蛋白质组学(MP)综合分析,MG/MT分析通过额外的迭代分箱步骤升级,代谢途径图,以及有关功能注释和数据可视化的一些改进。MOSCA处理原始测序数据和质谱,并进行预处理,装配,注释,分箱和差异基因/蛋白质表达分析。MOSCA在大型表格中显示分类学和功能分析,执行代谢途径映射,生成Krona图并在热图中显示基因/蛋白质表达结果,改进组学数据可视化。MOSCA可以从单个命令轻松运行,同时还提供Web界面(MOSGUITO)。相关功能包括一组广泛的自定义选项,允许量身定制的分析以适应特定的研究目标,以及使用替代配置从中间检查点重新启动管道的能力。两个案例研究展示了MOSCA结果,从厌氧消化器中提供厌氧微生物群落的完整视图,并了解特定微生物的作用。MOSCA代表了元组学研究的关键进展,提供一个直观的,全面,和多才多艺的解决方案,为研究人员寻求解开微生物群落的错综复杂的挂毯。
    The analysis of meta-omics data requires the utilization of several bioinformatics tools and proficiency in informatics. The integration of multiple meta-omics data is even more challenging, and the outputs of existing bioinformatics solutions are not always easy to interpret. Here, we present a meta-omics bioinformatics pipeline, Meta-Omics Software for Community Analysis (MOSCA), which aims to overcome these limitations. MOSCA was initially developed for analysing metagenomics (MG) and metatranscriptomics (MT) data. Now, it also performs MG and metaproteomics (MP) integrated analysis, and MG/MT analysis was upgraded with an additional iterative binning step, metabolic pathways mapping, and several improvements regarding functional annotation and data visualization. MOSCA handles raw sequencing data and mass spectra and performs pre-processing, assembly, annotation, binning and differential gene/protein expression analysis. MOSCA shows taxonomic and functional analysis in large tables, performs metabolic pathways mapping, generates Krona plots and shows gene/protein expression results in heatmaps, improving omics data visualization. MOSCA is easily run from a single command while also providing a web interface (MOSGUITO). Relevant features include an extensive set of customization options, allowing tailored analyses to suit specific research objectives, and the ability to restart the pipeline from intermediary checkpoints using alternative configurations. Two case studies showcased MOSCA results, giving a complete view of the anaerobic microbial communities from anaerobic digesters and insights on the role of specific microorganisms. MOSCA represents a pivotal advancement in meta-omics research, offering an intuitive, comprehensive, and versatile solution for researchers seeking to unravel the intricate tapestry of microbial communities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    地球上最敌对的海洋栖息地之一是南太平洋环流(SPG)的表面,具有高太阳辐射的特点,营养极度枯竭和生产力低下。在SO-245“UltraPac”巡航通过超贫营养SPG中心期间,通过荧光原位杂交检测到海洋α-蛋白质细菌组AEGEAN169,其相对丰度高达最上层水层总微生物群落的6%,具有两个不同的种群(念珠菌Nemonibacter和Ca。Indimonas).分裂细胞的高频率与高转录水平相结合,这表明这两种进化枝可能具有高度代谢活性。AEGEAN169的比较宏基因组和代谢组学分析显示,与竞争对手SAR11,SAR86,SAR116和Prochloroccocus相比,它们对这种极端环境编码了微妙但独特的代谢适应。两种AEGEAN169进化枝每个预测蛋白的转运蛋白百分比最高(9.5%和10.6%,分别)。特别是,ABC转运蛋白与蛋白视紫红质的高表达和分解代谢途径的检测,建议两种AEGEAN169进化枝的潜在清除生活方式。尽管两个AEGEAN169进化枝可能共享利用膦酸盐作为磷源的基因组潜力,它们的碳和氮代谢途径不同。Ca.Nemonibacter可能使用甘氨酸甜菜碱,而Ca。氨单胞菌可能会分解尿素,肌酸,和狗娘养的。总之,两种进化枝的不同潜在代谢策略表明,两者都很好地适应了资源有限的条件,并与SPG地表水最上层的其他优势微生物进化枝竞争良好。
    One of the most hostile marine habitats on Earth is the surface of the South Pacific Gyre (SPG), characterized by high solar radiation, extreme nutrient depletion, and low productivity. During the SO-245 \"UltraPac\" cruise through the center of the ultra-oligotrophic SPG, the marine alphaproteobacterial group AEGEAN169 was detected by fluorescence in situ hybridization at relative abundances up to 6% of the total microbial community in the uppermost water layer, with two distinct populations (Candidatus Nemonibacter and Ca. Indicimonas). The high frequency of dividing cells combined with high transcript levels suggests that both clades may be highly metabolically active. Comparative metagenomic and metatranscriptomic analyses of AEGEAN169 revealed that they encoded subtle but distinct metabolic adaptions to this extreme environment in comparison to their competitors SAR11, SAR86, SAR116, and Prochlorococcus. Both AEGEAN169 clades had the highest percentage of transporters per predicted proteins (9.5% and 10.6%, respectively). In particular, the high expression of ABC transporters in combination with proteorhodopsins and the catabolic pathways detected suggest a potential scavenging lifestyle for both AEGEAN169 clades. Although both AEGEAN169 clades may share the genomic potential to utilize phosphonates as a phosphorus source, they differ in their metabolic pathways for carbon and nitrogen. Ca. Nemonibacter potentially use glycine-betaine, whereas Ca. Indicimonas may catabolize urea, creatine, and fucose. In conclusion, the different potential metabolic strategies of both clades suggest that both are well adapted to thrive resource-limited conditions and compete well with other dominant microbial clades in the uppermost layers of SPG surface waters.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    丙酸盐是研究厌氧消化中能量受限的互养群落的模型基质,和共生细菌通常催化其与产甲烷菌的共生降解。在本研究中,宏基因组学和超转录组学用于研究支持材料的效果(例如,水炭)对丙酸酯降解的关键成员及其合作机制的研究。结果表明,水煤焦提高了丙酸盐的甲烷产率(高达57.1%)。微生物组的一般转录行为表明,种间H2转移(IHT)和直接种间电子转移(DIET)在水炭介导的丙酸甲烷化中起着至关重要的作用。通过以基因组为中心的转移基因组学鉴定出五种高活性的同养丙酸盐氧化细菌。H85pel,Pelotomaculaceae家族的成员,被水煤焦特别富集。水炭增强鞭毛亚基的表达,与H85pel中的产甲烷菌和氢化酶相互作用,表明IHT是促进丙酸降解的重要因素之一。水煤浆还富含Thauera属的H162tha。水炭诱导完全丙酸氧化途径相关基因的表达,不产生乙酸盐。水炭和电子菌毛介导的饮食得到了增强,这是促进丙酸酯降解的另一个因素。这些发现改善了对代谢特性的理解以及共养丙酸氧化细菌(SPOB)与共代谢伙伴之间的合作,并提供了有关丙酸产甲烷系统功能的全面转录见解。
    Propionate is a model substrate for studying energy-limited syntrophic communities in anaerobic digestion, and syntrophic bacteria usually catalyze its degradation in syntrophy with methanogens. In the present study, metagenomics and metatranscriptomics were used to study the effect of the supportive material (e.g., hydrochar) on the key members of propionate degradation and their cooperation mechanism. The results showed that hydrochar increased the methane production rate (up to 57.1%) from propionate. The general transcriptional behavior of the microbiome showed that both interspecies H2 transfer (IHT) and direct interspecies electron transfer (DIET) played essential roles in the hydrochar-mediated methanation of propionate. Five highly active syntrophic propionate-oxidizing bacteria were identified by genome-centric metatranscriptomics. H85pel, a member of the family Pelotomaculaceae, was specifically enriched by hydrochar. Hydrochar enhanced the expression of the flagellum subunit, which interacted with methanogens and hydrogenases in H85pel, indicating that IHT was one of the essential factors promoting propionate degradation. Hydrochar also enriched H162tha belonging to the genus of Thauera. Hydrochar induced the expression of genes related to the complete propionate oxidation pathway, which did not produce acetate. Hydrochar and e-pili-mediated DIET were enhanced, which was another factor promoting propionate degradation. These findings improved the understanding of metabolic traits and cooperation between syntrophic propionate oxidizing bacteria (SPOB) and co-metabolizing partners and provided comprehensive transcriptional insights on function in propionate methanogenic systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在2019年,糖尿病足国际工作组就使用分子微生物学技术常规诊断糖尿病足溃疡并发感染提出了六个问题。这篇综述的目的是评估解决这些问题的当代证据,并描述继续发展分子微生物学测定的有希望的途径。
    自2019年以来,已经证明了对糖尿病足溃疡样本进行宏基因组和转移组学研究的可行性。然而,这些初步研究使用了考虑选择偏差的小样本.我们等待更大规模的,纵向研究,可能使用最近成立的糖尿病足联盟,确定与感染和患者预后相关的微生物组谱。这些结果如何转化为临床诊断需要进一步澄清。
    高通量分子微生物学技术尚未准备好作为一线诊断的临床应用。然而,从扩增子测序转向宏基因组和转移组学研究,有可能显著加速可能对患者护理产生有意义的检测方法的开发.
    UNASSIGNED: In 2019, the International Working Group on the Diabetic Foot voiced six concerns regarding the use of molecular microbiology techniques for routine diagnosis of infection complicating diabetic foot ulcers. The purpose of this review is to evaluate contemporary evidence addressing each of these concerns and describe promising avenues for continued development of molecular microbiology assays.
    UNASSIGNED: Since 2019, the feasibility of conducting metagenomic and metatranscriptomic studies on diabetic foot ulcer samples has been shown. However, these preliminary studies used small samples with concerns for selection bias. We await larger-scale, longitudinal studies, potentially using the recently formed Diabetic Foot Consortium, to identify microbiome profiles associated with infection and patient outcomes. How these results would translate into a clinical diagnostic requires further clarification.
    UNASSIGNED: High-throughput molecular microbiology techniques are not yet ready for clinical adoption as first-line diagnostics. However, moving from amplicon sequencing to metagenomic and metatranscriptomic studies has the potential to significantly accelerate development of assays that might meaningfully impact patient care.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号