metaproteomics

元蛋白质组学
  • 文章类型: Journal Article
    元蛋白质组学提供了对复杂微生物群落功能的见解,同时也能够揭示微生物-微生物和宿主-微生物的相互作用。数据独立采集(DIA)质谱是一种新兴的技术,这对实现深度和准确的元蛋白质组学具有巨大的潜力,具有更高的可重复性,但由于元蛋白质组学和DIA数据的固有复杂性,仍然面临一系列挑战。
    这篇综述概述了DIA元蛋白质组学方法,涵盖数据库建设等方面,搜索策略,和数据分析工具。介绍了当前DIA元蛋白质组学研究的几个案例来说明该程序。还强调了重要的持续挑战。进一步讨论了DIA方法在元蛋白质组学分析中的未来前景。通过GoogleScholar和PubMed搜索并收集引用的参考文献。
    考虑到DIA元蛋白质组学数据固有的复杂性,专门为解释而设计的数据分析策略势在必行。从这个角度来看,我们预计深度学习方法和从头测序方法将在未来变得更加普遍,潜在的提高蛋白质覆盖在元蛋白质组学。此外,元蛋白质组学的进步还取决于样品制备方法的发展,数据分析策略,等。这些因素是释放元蛋白质组学全部潜力的关键。
    UNASSIGNED: Metaproteomics offers insights into the function of complex microbial communities while it is also capable of revealing microbe-microbe and host-microbe interactions. Data-independent acquisition (DIA) mass spectrometry is an emerging technology, which holds great potential to achieve deep and accurate metaproteomics with higher reproducibility yet still facing a series of challenges due to the inherent complexity of metaproteomics and DIA data.
    UNASSIGNED: This review offers an overview of the DIA metaproteomics approaches, covering aspects such as database construction, search strategy, and data analysis tools. Several cases of current DIA metaproteomics studies are presented to illustrate the procedures. Important ongoing challenges are also highlighted. Future perspectives of DIA methods for metaproteomics analysis are further discussed. Cited references are searched through and collected from Google Scholar and PubMed.
    UNASSIGNED: Considering the inherent complexity of DIA metaproteomics data, data analysis strategies specifically designed for interpretation is imperative. From this point of view, we anticipate that deep learning methods and de novo sequencing methods will become more prevalent in the future, potentially improving protein coverage in metaproteomics. Moreover, the advancement of metaproteomics also depends on the development of sample preparation methods, data analysis strategies, etc. These factors are key to unlocking the full potential of metaproteomics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    元组学数据的分析需要利用几种生物信息学工具和熟练的信息学。多个元组学数据的整合更具挑战性,现有生物信息学解决方案的输出并不总是容易解释。这里,我们提出了一个元组学生物信息学管道,用于社区分析的元组学软件(MOSCA),旨在克服这些限制。MOSCA最初是为分析宏基因组学(MG)和超转录组学(MT)数据而开发的。现在,它还进行MG和元蛋白质组学(MP)综合分析,MG/MT分析通过额外的迭代分箱步骤升级,代谢途径图,以及有关功能注释和数据可视化的一些改进。MOSCA处理原始测序数据和质谱,并进行预处理,装配,注释,分箱和差异基因/蛋白质表达分析。MOSCA在大型表格中显示分类学和功能分析,执行代谢途径映射,生成Krona图并在热图中显示基因/蛋白质表达结果,改进组学数据可视化。MOSCA可以从单个命令轻松运行,同时还提供Web界面(MOSGUITO)。相关功能包括一组广泛的自定义选项,允许量身定制的分析以适应特定的研究目标,以及使用替代配置从中间检查点重新启动管道的能力。两个案例研究展示了MOSCA结果,从厌氧消化器中提供厌氧微生物群落的完整视图,并了解特定微生物的作用。MOSCA代表了元组学研究的关键进展,提供一个直观的,全面,和多才多艺的解决方案,为研究人员寻求解开微生物群落的错综复杂的挂毯。
    The analysis of meta-omics data requires the utilization of several bioinformatics tools and proficiency in informatics. The integration of multiple meta-omics data is even more challenging, and the outputs of existing bioinformatics solutions are not always easy to interpret. Here, we present a meta-omics bioinformatics pipeline, Meta-Omics Software for Community Analysis (MOSCA), which aims to overcome these limitations. MOSCA was initially developed for analysing metagenomics (MG) and metatranscriptomics (MT) data. Now, it also performs MG and metaproteomics (MP) integrated analysis, and MG/MT analysis was upgraded with an additional iterative binning step, metabolic pathways mapping, and several improvements regarding functional annotation and data visualization. MOSCA handles raw sequencing data and mass spectra and performs pre-processing, assembly, annotation, binning and differential gene/protein expression analysis. MOSCA shows taxonomic and functional analysis in large tables, performs metabolic pathways mapping, generates Krona plots and shows gene/protein expression results in heatmaps, improving omics data visualization. MOSCA is easily run from a single command while also providing a web interface (MOSGUITO). Relevant features include an extensive set of customization options, allowing tailored analyses to suit specific research objectives, and the ability to restart the pipeline from intermediary checkpoints using alternative configurations. Two case studies showcased MOSCA results, giving a complete view of the anaerobic microbial communities from anaerobic digesters and insights on the role of specific microorganisms. MOSCA represents a pivotal advancement in meta-omics research, offering an intuitive, comprehensive, and versatile solution for researchers seeking to unravel the intricate tapestry of microbial communities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    使用含有粘膜相关微生物群的肠灌洗液(IVF)代替粪便样品,使用不同的组学方法来研究肠道微生物群。专注于从健康和乙型肝炎病毒肝病(HBV-LD)收集的63个IVF样本,提出了一个问题,即是否可以提取组学特征来区分这些样本。来自组学数据的IVF相关微生物群被分为两个肠型集,而基于基因组学的肠型与基于蛋白质组学的肠型在微生物群或IVF分布中的重叠性差.在这些肠型中缺乏特异性识别健康或HBV-LD的分子特征。针对组学数据运行机器学习寻求适当的模型,以根据选定的基因或蛋白质区分健康和HBV-LDIVF。尽管单个组学数据集在这种区分中基本上是可行的,两个数据集的集成提高了辨别效率。在模型中具有更高频率的蛋白质特征在健康和HBV-LD之间进一步比较,基于它们的丰度,带来了三种潜在的蛋白质生物标志物。本研究强调,元组学数据的整合有利于健康和HBV-LD的分子鉴别器,并揭示了IVF样本对于小群体中的微生物组是有价值的。
    Intestinal lavage fluid (IVF) containing the mucosa-associated microbiota instead of fecal samples was used to study the gut microbiota using different omics approaches. Focusing on the 63 IVF samples collected from healthy and hepatitis B virus-liver disease (HBV-LD), a question is prompted whether omics features could be extracted to distinguish these samples. The IVF-related microbiota derived from the omics data was classified into two enterotype sets, whereas the genomics-based enterotypes were poorly overlapped with the proteomics-based one in either distribution of microbiota or of IVFs. There is lack of molecular features in these enterotypes to specifically recognize healthy or HBV-LD. Running machine learning against the omics data sought the appropriate models to discriminate the healthy and HBV-LD IVFs based on selected genes or proteins. Although a single omics dataset is basically workable in such discrimination, integration of the two datasets enhances discrimination efficiency. The protein features with higher frequencies in the models are further compared between healthy and HBV-LD based on their abundance, bringing about three potential protein biomarkers. This study highlights that integration of metaomics data is beneficial for a molecular discriminator of healthy and HBV-LD, and reveals the IVF samples are valuable for microbiome in a small cohort.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    微生物和内源性酶的变化与肉类变质有关。然而,介导肉质与微生物组之间相互作用的因素研究不充分。在这项研究中,我们收集了整个冷藏期间的猪肉样本,并采用元蛋白质组学来表征猪肉和微生物蛋白质。我们的发现表明,与分解代谢过程相关的猪肉蛋白质在储存过程中与初始阶段相比上调。假单胞菌,梭菌属,Goodfellowiella,和性腺促进腐败过程。值得注意的是,我们观察到冷藏猪肉中与糖酵解酶相关的微生物蛋白丰度升高,鉴定许多与生物胺生产相关的蛋白质,从而突出了它们在微生物腐烂中的重要作用。Further,我们发现许多来自假单胞菌的微生物蛋白是核糖体蛋白,通过增强转录和翻译促进酶合成。这项研究提供了对微生物导致肉类腐败的潜在机制的内在见解。
    Alterations in microbiotas and endogenous enzymes have been implicated in meat deterioration. However, the factors that mediate the interactions between meat quality and microbiome profile were inadequately investigated. In this study, we collected pork samples throughout the refrigeration period and employed metaproteomics to characterize both the pork and microbial proteins. Our findings demonstrated that pork proteins associated with the catabolic process are upregulated during storage compared to the initial stage. Pseudomonas, Clostridium, Goodfellowiella, and Gonapodya contribute to the spoilage process. Notably, we observed an elevated abundance of microbial proteins related to glycolytic enzymes in refrigerated pork, identifying numerous proteins linked to biogenic amine production, thus highlighting their essential role in microbial decay. Further, we reveal that many of these microbial proteins from Pseudomonas are ribosomal proteins, promoting enzyme synthesis by enhancing transcription and translation. This study provides intrinsic insights into the underlying mechanisms by which microorganisms contribute to meat spoilage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    元蛋白质组学已成为研究微生物组的关键组学技术。在这个领域,Unipept生态系统,可在https://unipept访问。Ugent.be,已成为分析元蛋白质组数据的宝贵资源。它提供了对复杂生态系统的分类分布和功能特征的深入了解。本教程解释了基本概念,如最低共同祖先(LCA)测定和错过切割的肽的处理。它还提供了详细的,使用UnipeptWeb应用程序和UnipeptDesktop进行全面元蛋白质组学分析的分步指南。通过将理论原理与实践方法相结合,本教程为研究人员提供了必要的知识和工具,使他们能够在微生物组研究中充分利用元蛋白质组学。
    Metaproteomics has become a crucial omics technology for studying microbiomes. In this area, the Unipept ecosystem, accessible at https://unipept.ugent.be , has emerged as a valuable resource for analyzing metaproteomic data. It offers in-depth insights into both taxonomic distributions and functional characteristics of complex ecosystems. This tutorial explains essential concepts like Lowest Common Ancestor (LCA) determination and the handling of peptides with missed cleavages. It also provides a detailed, step-by-step guide on using the Unipept Web application and Unipept Desktop for thorough metaproteomics analyses. By integrating theoretical principles with practical methodologies, this tutorial empowers researchers with the essential knowledge and tools needed to fully utilize metaproteomics in their microbiome studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:近年来,组学技术为更深入地了解微生物群落的结构和功能特征提供了绝佳的机会。因此,对用户友好的需求日益增长,可重复,和多功能的生物信息学工具,可以有效地利用多组学数据,提供对微生物的全面理解。以前,我们引入了gNOMO,为以综合方式分析微生物组多组学数据而量身定制的生物信息学管道。为了应对微生物组领域不断发展的需求以及对集成的多组学数据分析的日益增长的必要性,我们已经对gNOMO管道进行了实质性的增强。
    结果:这里,我们提出了gNOMO2,一个全面的模块化管道,可以无缝地管理各种组学组合,范围从2到4种不同的组学数据类型,包括16S核糖体RNA(rRNA)基因扩增子测序,宏基因组学,metatranscriptomics,和元蛋白质组学。此外,gNOMO2具有专门的模块,用于处理16SrRNA基因扩增子测序数据,以创建适合于元蛋白质组学研究的蛋白质数据库。此外,它包含了新的差异丰度,一体化,和可视化方法,增强工具包,以便对微生物组进行更有见地的分析。通过使用包含各种生态系统和组学组合的4个微生物组多组学数据集,展示了这些新功能的功能。gNOMO2不仅复制了这些研究的大多数主要发现,而且还提供了更多有价值的观点。
    结论:gNOMO2能够在微生物组多组数据中彻底整合分类学和功能分析,在宿主相关和自由生活的微生物组研究中提供新的见解。gNOMO2可在https://github.com/muzafferarikan/gNOMO2免费获得。
    In recent years, omics technologies have offered an exceptional chance to gain a deeper insight into the structural and functional characteristics of microbial communities. As a result, there is a growing demand for user-friendly, reproducible, and versatile bioinformatic tools that can effectively harness multi-omics data to provide a holistic understanding of microbiomes. Previously, we introduced gNOMO, a bioinformatic pipeline tailored to analyze microbiome multi-omics data in an integrative manner. In response to the evolving demands within the microbiome field and the growing necessity for integrated multi-omics data analysis, we have implemented substantial enhancements to the gNOMO pipeline.
    Here, we present gNOMO2, a comprehensive and modular pipeline that can seamlessly manage various omics combinations, ranging from 2 to 4 distinct omics data types, including 16S ribosomal RNA (rRNA) gene amplicon sequencing, metagenomics, metatranscriptomics, and metaproteomics. Furthermore, gNOMO2 features a specialized module for processing 16S rRNA gene amplicon sequencing data to create a protein database suitable for metaproteomics investigations. Moreover, it incorporates new differential abundance, integration, and visualization approaches, enhancing the toolkit for a more insightful analysis of microbiomes. The functionality of these new features is showcased through the use of 4 microbiome multi-omics datasets encompassing various ecosystems and omics combinations. gNOMO2 not only replicated most of the primary findings from these studies but also offered further valuable perspectives.
    gNOMO2 enables the thorough integration of taxonomic and functional analyses in microbiome multi-omics data, offering novel insights in both host-associated and free-living microbiome research. gNOMO2 is available freely at https://github.com/muzafferarikan/gNOMO2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    为了揭示脱氮途径中的关键酶,进一步阐明催化反应的机理,本研究利用元蛋白质组学结合分子动力学和密度泛函理论计算。在基于厌氧氨氧化的系统中,斯图加特氏菌提供的蛋白质高达88.37%。肼合成酶(HZS)和肼脱氢酶(HDH)分别占总蛋白的15.94%和3.45%。因此被认为是脱氮途径中的关键酶。HZSγ与NO结合的过程,最低结合自由能为-4.91±1.33kJ/mol。HZSα催化的反应被计算为限速催化步骤,因为它通过穿过高达190.29kJ/mol的能垒将质子从NH3转移到·OH。这项研究提供了分子水平的见解,以增强基于anammox的系统中的脱氮性能。
    To reveal the key enzymes in the nitrogen removal pathway and to further elucidate the mechanism of the catalytic reaction, this study utilized metaproteomics combined with molecular dynamics and density functional theory calculation. K. stuttgartiensis provided the proteins up to 88.37 % in the anammox-based system. Hydrazine synthase (HZS) and hydrazine dehydrogenase (HDH) accounted for 15.94 % and 3.45 % of the total proteins expressed by K. stuttgartiensis, thus were considered as critical enzymes in the nitrogen removal pathway. The process of HZSγ binding to NO with lowest binding free energy of -4.91 ± 1.33 kJ/mol. The reaction catalyzed by HZSα was calculated to be the rate-limiting catalyzing step, because it transferred the proton from NH3 to ·OH by crossing an energy barrier of up to 190.29 kJ/mol. This study provided molecular level insights to enhance the performance of nitrogen removal in anammox-based system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们报告了八个囊性纤维化婴儿的肠道微生物群的元蛋白质组学分析,在生命的第一年。这是针对这种疾病的第一项研究,该研究使用元蛋白质组学分析了如此年轻的患者的粪便样本。
    We report a metaproteomic analysis of the gut microbiota of eight infants with cystic fibrosis, during the first year of life. This is the first study in this disease that uses metaproteomics to analyze stool samples from patients at such a young age.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    微生物与人类疾病和健康密切相关。了解微生物群落的组成和功能需要广泛的研究。最近,元蛋白质组学已成为对微生物进行全面和深入研究的重要方法。然而,样品处理方面的主要挑战,质谱数据采集,由于微生物群落样本的复杂性和高度异质性,数据分析限制了元蛋白质组学的发展。在元蛋白质组学分析中,优化不同类型样品的预处理方法,采用不同的微生物分离,富集,提取,和裂解方案通常是必要的。类似于单物种蛋白质组学,元蛋白质组学的质谱数据采集模式包括数据依赖采集(DDA)和数据独立采集(DIA).DIA可以从样品中收集全面的肽信息,并具有未来开发的巨大潜力。然而,DIA的数据分析受到元蛋白质组样本复杂性的挑战,这阻碍了元蛋白质组的更深覆盖。数据分析中最重要的步骤是构建蛋白质序列数据库。数据库的大小和完整性不仅强烈影响识别的数量,而且还在物种和功能层面进行分析。当前元蛋白质组数据库构建的金标准是基于元基因组测序的蛋白质序列数据库。基于迭代数据库搜索的公共数据库过滤方法已被证明具有很强的实用价值。以肽为中心的DIA数据分析方法是主流的数据分析策略。深度学习和人工智能的发展将极大地促进精度,覆盖范围,和元蛋白质组学分析的速度。在下游生物信息学分析方面,一系列可以对蛋白质进行物种注释的注释工具,肽,和基因水平已经在最近几年发展,以确定微生物群落的组成。与其他组学方法相比,微生物群落的功能分析是元蛋白质组学的独特功能。元蛋白质组学已成为微生物群落多组学分析的重要组成部分,在覆盖深度方面具有巨大的发展潜力,检测灵敏度,和数据分析的完整性。
    Microorganisms are closely associated with human diseases and health. Understanding the composition and function of microbial communities requires extensive research. Metaproteomics has recently become an important method for throughout and in-depth study of microorganisms. However, major challenges in terms of sample processing, mass spectrometric data acquisition, and data analysis limit the development of metaproteomics owing to the complexity and high heterogeneity of microbial community samples. In metaproteomic analysis, optimizing the preprocessing method for different types of samples and adopting different microbial isolation, enrichment, extraction, and lysis schemes are often necessary. Similar to those for single-species proteomics, the mass spectrometric data acquisition modes for metaproteomics include data-dependent acquisition (DDA) and data-independent acquisition (DIA). DIA can collect comprehensive peptide information from a sample and holds great potential for future development. However, data analysis for DIA is challenged by the complexity of metaproteome samples, which hinders the deeper coverage of metaproteomes. The most important step in data analysis is the construction of a protein sequence database. The size and completeness of the database strongly influence not only the number of identifications, but also analyses at the species and functional levels. The current gold standard for metaproteome database construction is the metagenomic sequencing-based protein sequence database. A public database-filtering method based on an iterative database search has been proven to have strong practical value. The peptide-centric DIA data analysis method is a mainstream data analysis strategy. The development of deep learning and artificial intelligence will greatly promote the accuracy, coverage, and speed of metaproteomic analysis. In terms of downstream bioinformatics analysis, a series of annotation tools that can perform species annotation at the protein, peptide, and gene levels has been developed in recent years to determine the composition of microbial communities. The functional analysis of microbial communities is a unique feature of metaproteomics compared with other omics approaches. Metaproteomics has become an important component of the multi-omics analysis of microbial communities, and has great development potential in terms of depth of coverage, sensitivity of detection, and completeness of data analysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Congress
    2023年欧洲生物信息学质谱学会(EuBIC-MS)开发者大会于1月15日至1月20日召开,2023年,在提契诺州MonteVerità的国会斯特凡诺·弗朗辛,瑞士。参与者是从事计算质谱(MS)工作的科学家和开发人员,代谢组学,和蛋白质组学。为期5天的计划分为介绍性主题演讲和平行的黑客马拉松会议,重点是“蛋白质组学中的人工智能”,以刺激MS驱动的组学领域的未来方向。在后者中,参与者开发了生物信息学工具和资源,以满足社区的突出需求。黑客马拉松允许经验不足的参与者向更先进的计算MS专家学习,并积极为高度相关的研究项目做出贡献。通过改进数据分析和促进未来的研究,我们成功地产生了一些适用于蛋白质组学社区的新工具。
    The 2023 European Bioinformatics Community for Mass Spectrometry (EuBIC-MS) Developers Meeting was held from January 15th to January 20th, 2023, in Congressi Stefano Franscin at Monte Verità in Ticino, Switzerland. The participants were scientists and developers working in computational mass spectrometry (MS), metabolomics, and proteomics. The 5-day program was split between introductory keynote lectures and parallel hackathon sessions focusing on \"Artificial Intelligence in proteomics\" to stimulate future directions in the MS-driven omics areas. During the latter, the participants developed bioinformatics tools and resources addressing outstanding needs in the community. The hackathons allowed less experienced participants to learn from more advanced computational MS experts and actively contribute to highly relevant research projects. We successfully produced several new tools applicable to the proteomics community by improving data analysis and facilitating future research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号