metal-organic interfaces

  • 文章类型: Journal Article
    We present a comparative study of metal-organic interface properties obtained from dispersion corrected density functional theory calculations based on two different approaches: the periodic slab-supercell technique and cluster models with 32-290 Ag atoms. Fermi smearing and fixing of cluster borders are required to make the cluster calculation feasible and realistic. The considered adsorption structure and energy of a PTCDA molecule on the Ag(110) surface is not well reproduced with clusters containing only two metallic layers. However, all clusters with four layers of silver atoms and sufficient lateral extension reproduce the adsorbate structure within 0.04 Å with respect to the slab-supercell structure and provide adsorption energies of ( -4.45± 0.08 eV) consistent with the slab result of -4.47 eV. Thus, metal-organic adsorbate systems can be realistically represented by properly defined cluster models. © 2018 Wiley Periodicals, Inc.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The adsorption of organic molecules onto the close-packed facets of coinage metals is studied, and how accurately adsorption heights can be described by using recent advances of the van der Waals density functional (vdWDF), with optPBE/vdWDF, optB86b/vdWDF, vdWDF2, and rev/vdWDF2 functionals is illustrated. The adsorption of two prototypical aromatic hydrocarbons is investigated, and the calculated adsorption heights are compared to experimental literature values from normal incident X-ray standing wave absorption and a state-of-the-art semi-empirical method. It is shown that both the optB86b/vdWDF and rev/vdWDF2 functionals describe adsorption heights with an accuracy of 0.1 Å, compared to experimental values, and are concluded as reliable methods of choice for related systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号