metal sulfides

  • 文章类型: Journal Article
    Shewanella属的成员以其通用的电子接受途径而闻名,使它们能够将有机物的分解与各种末端电子受体的还原结合起来,以在不同的环境中进行异养生长。这里,我们报告了ShewanellaoneidensisMR-1的自养生长,其光电子由照明的生物CdS纳米颗粒提供。这种混合系统使光合振荡生产乙酸从二氧化碳超过五个月,远远超过其他只能维持数小时或数天的无机-生物混合系统。生物化学,电化学和转录组学分析显示,发光的CdS纳米粒子对S.oneidenisMR-1的有效电子吸收提供了足够的能量,以刺激先前被忽视的还原性甘氨酸途径进行CO2固定。连续的太阳能到化学转化是通过硫物种中的光子诱导的电再循环来实现的。总的来说,我们的研究结果表明,这种矿物质辅助光合作用,作为一种广泛存在和独特的光能转换模型,可以支持非光合微生物在营养贫瘠环境中的持续光合自养生长,并介导碳和硫耦合循环的逆转,从而导致以前未知的环境影响。此外,混合动力系统提供了一个可持续和灵活的平台来开发各种碳中和太阳能产品。
    Members of the genus Shewanella are known for their versatile electron accepting routes, which allow them to couple decomposition of organic matter to reduction of various terminal electron acceptors for heterotrophic growth in diverse environments. Here, we report autotrophic growth of Shewanella oneidensis MR-1 with photoelectrons provided by illuminated biogenic CdS nanoparticles. This hybrid system enables photosynthetic oscillatory acetate production from CO2 for over five months, far exceeding other inorganic-biological hybrid system that can only sustain for hours or days. Biochemical, electrochemical and transcriptomic analyses reveal that the efficient electron uptake of S. oneidensis MR-1 from illuminated CdS nanoparticles supplies sufficient energy to stimulate the previously overlooked reductive glycine pathway for CO2 fixation. The continuous solar-to-chemical conversion is achieved by photon induced electric recycling in sulfur species. Overall, our findings demonstrate that this mineral-assisted photosynthesis, as a widely existing and unique model of light energy conversion, could support the sustained photoautotrophic growth of non-photosynthetic microorganisms in nutrient-lean environments and mediate the reversal of coupled carbon and sulfur cycling, consequently resulting in previously unknown environmental effects. In addition, the hybrid system provides a sustainable and flexible platform to develop a variety of solar products for carbon neutrality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    选择性CO2到CO的光还原正在进行深入研究,需要具有调节微结构的光催化剂来加速反应动力学。这里,我们报告了在Ti3C2TxMXene的二维(2D)载体上生长的具有硫空位(VS)的CuInS2纳米片阵列,用于CO2至CO的光还原。我们的结果表明,使用Ti3C2Tx会引起强烈的支持效应,这导致CuInS2的分层纳米片阵列生长,同时导致电荷从CuInS2转移到Ti3C2Tx载体,导致在CuInS2中形成VS。基于Ti3C2Tx的强支撑效应被证明适用于用VS制备一系列不同的金属硫化铟阵列。VS负载在Ti3C2Tx上的CuInS2纳米片阵列有利于CO2光催化选择性还原为CO,与纯CuInS2相比,显示出超过14.8倍的显着活性增强。实验和计算研究指出,由于Ti3C2Tx的支持作用而产生的CuInS2的VS降低了*COOH→*OH*CO的限速步骤的屏障,这是光活性增强的关键。这项工作证明了MXene支持效果,并提供了一种有效的方法来调节金属硫化物的原子微观结构以提高光催化性能。
    Selective CO2-to-CO photoreduction is under intensive research and requires photocatalysts with tuned microstructures to accelerate the reaction kinetics. Here, we report CuInS2 nanosheet arrays with sulfur vacancies (VS) grown on the two-dimensional (2D) support of Ti3C2Tx MXene for CO2-to-CO photoreduction. Our results reveal that the use of Ti3C2Tx induces strong support effect, which causes the hierarchical nanosheet arrays growth of CuInS2 and simultaneously leads to charge transfer from CuInS2 to Ti3C2Tx support, resulting in VS formed in CuInS2. The strong support effect based on Ti3C2Tx is proven to be applicable to prepare a series of different metal indium sulfide arrays with VS. CuInS2 nanosheet arrays with VS supported on Ti3C2Tx benefit the photocatalytic selective reduction of CO2 to CO, manifesting a remarkable over 14.8-fold activity enhancement compared with pure CuInS2. The experimental and computational investigations pinpoint that VS of CuInS2 resulting from the support effect of Ti3C2Tx lowers the barrier of the rate-limiting step of *COOH → *OH + *CO, which is the key to the photoactivity enhancement. This work demonstrates MXene support effects and offers an effective approach to regulate the atomic microstructure of metal sulfides toward enhancing photocatalytic performance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    无机金属硫化物作为锂离子电池(LIB)中的负极材料已得到广泛的研究。然而,结晶有机杂化金属硫化物作为阳极材料在LIB中的应用相当罕见。此外,结晶有机杂化金属硫化物的纳米颗粒与导电材料的结合有望提高电化学锂存储性能。然而,由于难以收获结晶有机杂化金属硫化物的纳米粒子,迄今为止,这种方法从未尝试过。在这里,通过自上而下的方法制备了结晶有机杂化硫化镉锑(1,4-DABH2)Cd2Sb2S6(DCAS)的纳米颗粒,包括溶剂热合成的程序,球磨,和超声波粉碎。此后,通过冷冻干燥处理,将尺寸为~500nm的DCAS纳米颗粒嵌入氧化石墨烯纳米片中,得到DCAS@GO复合材料。与报道的Sb2S3-和CdS基复合材料相比,DCAS@GO复合材料表现出优异的电化学Li+离子存储性能,包括100mAg-1时的1075.6mAhg-1的高容量和出色的速率公差(5000mAg-1时的646.8mAhg-1)。此外,DCAS@GO可以在1000mAg-1下进行500次循环后提供705.6mAhg-1的高容量。我们的研究为制备结晶有机杂化金属硫化物纳米粒子提供了一种可行的方法,并证明将有机杂化金属硫化物纳米粒子嵌入GO纳米片中可以有效地提高电化学Li+离子存储性能。
    Inorganic metal sulfides have received extensive investigation as anode materials in lithium-ion batteries (LIBs). However, applications of crystalline organic hybrid metal sulfides as anode materials in LIBs are quite rare. In addition, combining the nanoparticles of crystalline organic hybrid metal sulfides with conductive materials is expected to enhance the electrochemical lithium storage performance. Nevertheless, due to the difficulty of harvesting the nanoparticles of crystalline organic hybrid metal sulfides, this approach has never been tried to date. Herein, nanoparticles of a crystalline organic hybrid cadmium antimony sulfide (1,4-DABH2)Cd2Sb2S6 (DCAS) were prepared by a top-down method, including the procedures of solvothermal synthesis, ball milling, and ultrasonic pulverization. Thereafter, the nanoparticles of DCAS with sizes of ∼500 nm were intercalated into graphene oxide nanosheets through a freeze-drying treatment and a DCAS@GO composite was obtained. Compared with the reported Sb2S3- and CdS-based composites, the DCAS@GO composite exhibited superior electrochemical Li+ ion storage performance, including a high capacity of 1075.6 mAh g-1 at 100 mA g-1 and exceptional rate tolerances (646.8 mAh g-1 at 5000 mA g-1). In addition, DCAS@GO can provide a high capacity of 705.6 mAh g-1 after 500 cycles at 1000 mA g-1. Our research offers a viable approach for preparing the nanoparticles of crystalline organic hybrid metal sulfides and proves that intercalating organic hybrid metal sulfide nanoparticles into GO nanosheets can efficiently boost the electrochemical Li+ ion storage performance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    亲锂骨架的设计和制造对于构建先进的Li金属阳极非常重要。在这项工作中,据报道,通过种植金属硫化物(例如,Ni3S2)通过简单的超快焦耳加热(UJH)方法在垂直石墨烯(VG)上,这有助于在碳布(CC)支撑的VG基材上均匀分配亲锂位点,并具有牢固的键合。Ni3S2纳米颗粒均匀地锚定在优化的骨架上,如CC/VG@Ni3S2,这确保了高电导率和具有非枝晶的Li金属的均匀沉积。通过系统的电化学表征,与CC/VG@Ni3S2耦合的对称电池在1mAcm-2和1mAhcm-2的情况下,在14mV的超电势下提供1800h(900个循环)的稳定长期循环。同时,设计的CC/VG@Ni3S2-Li||LFP全电池显示出显著的电化学性能,在500次循环后在0.5C下的容量保持率为92.44%,并且具有优异的倍率性能。这种在分层碳基材料上合成金属硫化物的新颖策略为高性能锂金属电池(LMBs)的开发提供了新的思路。
    The design and fabrication of a lithiophilic skeleton are highly important for constructing advanced Li metal anodes. In this work, a new lithiophilic skeleton is reported by planting metal sulfides (e.g., Ni3S2) on vertical graphene (VG) via a facile ultrafast Joule heating (UJH) method, which facilitates the homogeneous distribution of lithiophilic sites on carbon cloth (CC) supported VG substrate with firm bonding. Ni3S2 nanoparticles are homogeneously anchored on the optimized skeleton as CC/VG@Ni3S2, which ensures high conductivity and uniform deposition of Li metal with non-dendrites. By means of systematic electrochemical characterizations, the symmetric cells coupled with CC/VG@Ni3S2 deliver a steady long-term cycle within 14 mV overpotential for 1800 h (900 cycles) at 1 mA cm-2 and 1 mAh cm-2. Meanwhile, the designed CC/VG@Ni3S2-Li||LFP full cell shows notable electrochemical performance with a capacity retention of 92.44% at 0.5 C after 500 cycles and exceptional rate performance. This novel synthesis strategy for metal sulfides on hierarchical carbon-based materials sheds new light on the development of high-performance lithium metal batteries (LMBs).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    金属-有机骨架衍生材料由于其在光催化反应中的显著益处而受到很多关注。在这项工作中,首先通过使用CAU-17作为模板的一锅法开发了Z方案ZnIn2S4/Bi2S3分层异质结。特定的制备方法使这两种单体之间具有紧密的界面接触,和CAU-17衍生的Bi2S3具有高表面积和孔隙率,导致有效的电荷分离和O2捕获。因此,用于从O2还原反应中产生光催化H2O2,ZnIn2S4/Bi2S3异质结可以在可见光下在纯水和环境空气中实现995μmolL-1的H2O2产量,分别是ZnIn2S4和Bi2S3的4.5倍和4倍。此外,在四环素溶液中,ZnIn2S4/Bi2S3光催化降解四环素,降解率可达95%,同时,最终H2O2产量达到1223μmolL-1。同样,从含有邻硝基苯酚的废水中也可以获得高产率的H2O2,酸性金黄色,或者酸性红,这些污染物被有效地降解。这项工作揭示了金属有机框架衍生材料在光催化中的潜力,以及提供对H2O2绿色合成和废水处理的见解。
    Metal-organic framework derived materials received a lot of attention due to their significant benefits in photocatalytic reactions. In this work, a Z-scheme ZnIn2S4/Bi2S3 hierarchical heterojunction is first developed by a one-pot method using CAU-17 as a template. The specific preparation method endows an intimate interface contact between these two monomers, and CAU-17-derived Bi2S3 possesses a high surface area and porosity, resulting in an efficient charge separation and O2 capture. Thus, for photocatalytic H2O2 production from the O2 reduction reaction, the ZnIn2S4/Bi2S3 heterojunction can achieve an H2O2 yield of 995 µmol L-1 in pure water and ambient air under visible light, 4.5 and 4 times that of ZnIn2S4 and Bi2S3, respectively. In addition, in tetracycline solution, ZnIn2S4/Bi2S3 can degrade tetracycline with a degradation rate of 95% by photocatalysis, and at the same time, a final H2O2 production yield of 1223 µmol L-1 is reached. Similarly, high yields of H2O2 are also obtained from wastewater containing o-nitrophenol, acid golden yellow, or acid red, and these pollutants are effectively degraded. This work reveals the potential of metal-organic framework-derived materials in photocatalysis, as well as provides insights into H2O2 green synthesis and wastewater treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    废石和尾矿中的金属硫化物由于在堆存过程中产生酸性矿山排水(AMD)而容易受到严重的土壤和水污染。湿法冶金是通过对废弃硫化物进行无害化处理和资源化利用的最重要的重金属修复技术之一。然而,由于浸出效率低和成本高,硫化物的常压湿法冶金仍然面临着巨大的挑战。在这项工作中,我们提出了一种协同浸出系统(Fe2(SO4)3-O3),并研究了闪锌矿(ZnS)的氧化溶解过程。在最优条件下,提取的锌达到97.8%。活性氧(ROS)(·OH,在自由基猝灭实验中鉴定出1O2和·O2-)。由于臭氧能够将闪锌矿中的硫氧化为硫酸盐,闪锌矿的溶解没有表现出钝化。此外,搅拌速率,O3入口浓度,Fe2(SO4)3浓度对闪锌矿的溶出有显著影响。同时,基于动力学拟合的表观活化能为24.11kJ/mol,这表明反应的控制步骤主要是扩散过程。该工作证明了闪锌矿在O3-Fe2(SO4)3体系中的协同浸出作用,为闪锌矿的高效和大气溶解提供了理论参考。
    Metal sulfides in waste rocks and tailings are susceptible to serious soil and water contamination due to the generation of acid mine drainage (AMD) during stockpiling. The hydrometallurgical process is one of the most essential heavy metal remediation technologies through harmless disposal and resource utilization of the waste sulfides. However, atmospheric hydrometallurgy of sulfides still faces great challenges due to low leaching efficiency and high cost. In this work, we proposed a cooperative leaching system (Fe2(SO4)3-O3) and investigated the oxidative dissolution process of sphalerite (ZnS). Under the optimal conditions, the extracted zinc reached 97.8%. Reactive oxygen species (ROS) (·OH, 1O2 and ·O2-) were identified in the radical quenching experiments. The dissolution of sphalerite did not show passivation due to the ozone\'s capability to oxidize the sulfur in sphalerite to sulfate. In addition, stirring rate, O3 inlet concentration, and Fe2(SO4)3 concentration had a significant effect on the dissolution of sphalerite. Meanwhile, the apparent activation energy was 24.11 kJ/mol based on kinetic fitting, which indicated that the controlling step of the reaction was mainly a diffusion process. This work demonstrated the cooperative effect of sphalerite leaching in the O3-Fe2(SO4)3 system and provided a theoretical reference for efficient and atmospheric dissolution of sphalerite.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    金属有机骨架材料可以通过热解转化为碳基纳米多孔材料,在储能领域有着广泛的应用。这里,我们设计了特殊的界面工程,将碳骨架和氮掺杂的碳纳米管(CNT)与过渡金属化合物(TMC)很好地结合在一起,这减轻了TMC的体效应并提高了电极的导电性。沸石咪唑酯骨架67被用作前体,通过热解形成碳骨架和大量氮掺杂的CNT,然后原位形成Co3O4和CoS2,最后,合成了Co3O4@CNTs和CoS2@CNTs。所获得的阳极电极表现出长的循环寿命和高倍率性能。在锂离子电池(LIB)中,Co3O4@CNT在5Ag-1的高电流下具有581mAhg-1的高容量,在1Ag-1下进行200次循环后,其可逆容量仍为1037.6mAhg-1。在钠离子电池(SIB)中,CoS2@CNT在0.1Ag-1下具有859.9mAhg-1的容量,并且在50次循环后可以保持在801.2mAhg-1。独特的界面工程和优异的电化学性能使其成为高倍率的理想阳极材料,长寿命LIB和SIB。
    Metal-organic framework materials can be converted into carbon-based nanoporous materials by pyrolysis, which have a wide range of applications in energy storage. Here, we design special interface engineering to combine the carbon skeleton and nitrogen-doped carbon nanotubes (CNTs) with the transition metal compounds (TMCs) well, which mitigates the bulk effect of the TMCs and improves the conductivity of the electrodes. Zeolitic imidazolate framework-67 is used as a precursor to form a carbon skeleton and a large number of nitrogen-doped CNTs by pyrolysis followed by the in situ formation of Co3O4 and CoS2, and finally, Co3O4@CNTs and CoS2@CNTs are synthesized. The obtained anode electrodes exhibit a long cycle life and high-rate properties. In lithium-ion batteries (LIBs), Co3O4@CNTs have a high capacity of 581 mAh g-1 at a high current of 5 A g-1, and their reversible capacity is still 1037.6 mAh g-1 after 200 cycles at 1 A g-1. In sodium-ion batteries (SIBs), CoS2@CNTs have a capacity of 859.9 mAh g-1 at 0.1 A g-1 and can be retained at 801.2 mAh g-1 after 50 cycles. The unique interface engineering and excellent electrochemical properties make them ideal anode materials for high-rate, long-life LIBs and SIBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    用于促进电荷转移和电子传输的诸如异质结构造和碳涂层工程的结构杂交手段被认为是解决与钾离子电池(PIB)中硫化物基阳极的低速率能力和差的循环稳定性相关的挑战的可行策略。受这些概念的激励,我们已经成功地制备了包球双金属硫化物异质结构的氮掺杂碳(FMS@NC)使用简单的溶剂热法,然后是聚多巴胺包裹和一步硫化/碳化过程。当用作PIB的阳极时,该FMS@NC显示出高比容量(在0.05A/g下585mAh/g-1)和长循环稳定性。对于这种高性能,减轻的体积膨胀和增强的电导率的协同作用已被证实源于异质结构的硫化物和N掺杂的碳基质。同时,综合表征揭示了该材料中存在插层-转换混合K离子存储机制。令人印象深刻的是,具有FMS@NC阳极和商用活性炭阴极的K离子电容器具有高达192Whkg-1的优异能量密度,和突出的循环稳定性。本研究为下一代储能装置设计高性能耐用的钾离子储能阳极提供了建设性指导。
    The means of structural hybridization such as heterojunction construction and carbon-coating engineering for facilitating charge transfer and electron transport are considered viable strategies to address the challenges associated with the low rate capability and poor cycling stability of sulfide-based anodes in potassium-ion batteries (PIBs). Motivated by these concepts, we have successfully prepared a hydrangea-like bimetallic sulfide heterostructure encapsulated in nitrogen-doped carbon (FMS@NC) using a simple solvothermal method, followed by poly-dopamine wrapping and a one-step sulfidation/carbonization process. When served as an anode for PIBs, this FMS@NC demonstrates a high specific capacity (585 mAh g-1 at 0.05 A/g) and long cycling stability. Synergetic effects of mitigated volume expansions and enhanced conductivity that are responsbile for such high performance have been verified to originate from the heterostructured sulfides and the N-doped carbon matrix. Meanwhile, comprehensive characterization reveals existence of an intercalation-conversion hybrid K-ion storage mechanism in this material. Impressively, a K-ion capacitor with the FMS@NC anode and a commercial activated carbon cathode exhibits a superior energy density of up to 192 Wh kg-1, a high power density, and outstanding cycling stability. This study provides constructive guidance for designing high-performance and durable potassium-ion storage anodes for next-generation energy storage devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过Fenton反应产生的活性氧(ROS),诱导脂质过氧化物(LPO),导致细胞结构损伤并最终引发铁性凋亡。然而,肿瘤微环境(TME)中ROS的产生受到Fenton反应催化效率的限制。在这里,开发了一种新型的中空介孔二氧化硅纳米颗粒(HMSN)与多金属硫化物掺杂的介孔二氧化硅纳米催化剂(NC)相结合,即MxSy-HMSNNCs(M代表铜锰和铁,S表示硫)。MxSy-HMSN可以通过以下方式显着提高铁凋亡:(1)通过Fenton或通过共催化的类Fenton反应促进H2O2向·OH的转化;(2)通过消耗TME中过表达的谷胱甘肽(GSH)来削弱ROS清除系统;(3)提供特殊的光热疗法以增强铁凋亡。MxSy-HMSN还可以充当抗癌药物多柔比星(DOX)的智能货物。DOX的释放响应于肿瘤病变处的GSH/pH/近红外光(NIR)照射,显着改善治疗结果,同时最大限度地减少副作用。此外,MxSy-HMSN表现出优异的磁共振成像(MRI)潜力。这种智能MxSy-HMSN提供了一种将铁性凋亡与化学光热疗法和磁共振成像(MRI)诊断相结合的协同方法,这可能是未来NC设计的信息性指南。
    The reactive oxygen species (ROS) produced through the Fenton reaction, induces lipid peroxide (LPO), causing cellular structural damage and ultimately triggering ferroptosis. However, the generation of ROS in the tumor microenvironment (TME) is limited by the catalytic efficiency of the Fenton reaction. Herein, a novel hollow mesoporous silica nanoparticle (HMSN) combined with multi-metal sulfide-doped mesoporous silica nanocatalyzers (NCs) was developed, namely MxSy-HMSN NCs (M represents Cu Mn and Fe, S denotes sulfur). The MxSy-HMSN can dramatically enhanced the ferroptosis by: (1) facilitating the conversion of H2O2 to ·OH through Fenton or Fenton-like reactions through co-catalysis; (2) weakening ROS scavenging systems by depleting the over expressed glutathione (GSH) in TME; (3) providing exceptional photothermal therapy to augment ferroptosis. The MxSy-HMSN can also act as smart cargos for anticancer drug-doxorubicin (DOX). The release of DOX is responsive to GSH/pH/Near-infrared Light (NIR) irradiation at the tumor lesion, significantly improving therapeutic outcomes while minimizing side effects. Additionally, the MxSy-HMSN has demonstrated excellent magnetic resonance imaging (MRI) potential. This smart MxSy-HMSN offer a synergetic approach combining ferroptosis with chemo-photothermal therapy and magnetic resonance imaging (MRI) diagnose, which could be an informative guideline for the design of future NCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    金属硫化物由于其高理论容量和易于设计的形态和结构而成为钠离子电池的极有前途的负极材料。在这项研究中,金属有机框架(ZIF-8/67十二面体)由于其大的比表面积而用作前体,可调孔隙结构,形态学,composition,和电化学反应中的多个活性位点。采用水浴法引入石墨烯合成了ZIF-8/67/GO,提高了ZIF-8/67的分散性,电导率增加,防止了钠电化学脱嵌过程中发生的体积膨胀现象。此外,硫化得到ZnS/CoS@C/rGO复合材料,测试了它们的电化学性质。结果表明,成功合成了ZnS/CoS@C/rGO复合材料,十二面体分散在大的石墨烯层中。在200mAg-1的电流密度下循环70次后,它保持了414.8mAhg-1的容量,在2Ag-1的高电流下表现出稳定的倍率性能,可逆容量为308.0mAhg-1。复合材料的优异倍率性能归因于其部分伪电容贡献。对Na+扩散系数的计算表明,这种复合材料钠离子迁移速度快也是其性能优异的原因之一。该研究突出了金属有机骨架衍生金属硫化物作为钠离子电池负极材料的广阔应用前景。
    Metal sulfides are highly promising anode materials for sodium-ion batteries due to their high theoretical capacity and ease of designing morphology and structure. In this study, a metal-organic framework (ZIF-8/67 dodecahedron) was used as a precursor due to its large specific surface area, adjustable pore structure, morphology, composition, and multiple active sites in electrochemical reactions. The ZIF-8/67/GO was synthesized using a water bath method by introducing graphene; the dispersibility of ZIF-8/67 was improved, the conductivity increased, and the volume expansion phenomenon that occurs during the electrochemical deintercalation of sodium was prevented. Furthermore, vulcanization was carried out to obtain ZnS/CoS@C/rGO composite materials, which were tested for their electrochemical properties. The results showed that the ZnS/CoS@C/rGO composite was successfully synthesized, with dodecahedrons dispersed in large graphene layers. It maintained a capacity of 414.8 mAh g-1 after cycling at a current density of 200 mA g-1 for 70 times, exhibiting stable rate performance with a reversible capacity of 308.0 mAh g-1 at a high current of 2 A g-1. The excellent rate performance of the composite is attributed to its partial pseudocapacitive contribution. The calculation of the diffusion coefficient of Na+ indicates that the rapid sodium ion migration rate of this composite material is also one of the reasons for its excellent performance. This study highlights the broad application prospects of metal-organic framework-derived metal sulfides as anode materials for sodium-ion batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号