magnetic hyperthermia

磁热疗
  • 文章类型: Journal Article
    淋巴转移是肿瘤早期扩散的主要原因,转移性前哨淋巴结(SLN)的鉴定和治疗在临床上是非常理想的。目前,可疑的恶性SLN通常在临床实践中接受一系列独立的手术,包括成像,染色,前哨淋巴结活检(SLNB)和淋巴结清扫(LND),这给诊断和治疗带来了不便,并可能导致患者术后并发症。此外,肿瘤引流淋巴结(TDLN)的普通切除可能会损害肿瘤根除所需的全身免疫.因此,我们利用之前构建的混合纳米系统(SPIOs+RPP)进行整合染色,超声成像,和转移性SLN的治疗。在这项研究中,SPIOsRPP可以成功迁移到SLN中,将其染成黑色,以便于视觉识别。除了染色,混合纳米系统可以实现SLN的对比增强超声(CEUS)成像。同时,通过磁性热疗免疫治疗VX2荷瘤兔pop窝淋巴结转移,可以有效抑制癌细胞,降低肿瘤负荷,逆转转移性SLN的免疫抑制微环境。这些发现表明SPIOsRPPs是一种潜在的多功能治疗诊断剂,用于检测和治疗淋巴转移。
    Lymphatic metastasis is the main cause of early-stage tumor spread, making the identification and therapy of metastatic sentinel lymph nodes (SLNs) are highly desirable in clinic. Currently, suspected malignant SLNs typically undergo a series of independent operations in clinical practice, including imaging, staining, sentinel lymph node biopsy (SLNB) and lymph node dissection (LND), which brings inconvenience to diagnosis and treatment, and may cause postoperative complications for patients. Moreover, the ordinary removal of tumor-draining lymph nodes (TDLNs) may do harm to systemic immunity required for tumor eradication. Hence, we utilized the hybrid nanosystem (SPIOs + RPPs) we constructed before for the integrated staining, ultrasound imaging, and therapy of metastatic SLNs. In this study, SPIOs + RPPs could migrate into SLNs successfully to stain them black for easy visual identification. Beyond staining, the hybrid nanosystem could realize contrast enhanced ultrasound (CEUS) imaging in SLNs. Meanwhile, it could inhibit cancer cells to lower the tumor burden and reverse immune-suppressive microenvironment of metastatic SLNs effectively via magnetic hyperthermia immunotherapy in VX2 tumor-bearing rabbits with popliteal fossa lymph node metastasis. These findings indicate that SPIOs + RPPs is a potential multifunctional theranostic agent for detection and therapy of lymphatic metastasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    超顺磁性纳米粒子(SPMNPs)在生物医学领域引起了广泛的关注,特别是用于癌症治疗的磁热疗法。然而,开发有效和生态友好的方法来合成SPMNPs仍然是一个挑战。本研究报道了使用石榴皮提取物作为稳定剂的SPMNPs的绿色合成方法。各种合成参数的影响,包括沉淀剂的类型(NH3和NaOH),N2气,提取物体积,pH值,对尺寸进行了系统调查,形态学,和纳米粒子的磁性。结果表明,减少提取物的体积增加了纳米颗粒的饱和磁化强度。发现N2气体对于防止纳米颗粒的氧化是必不可少的。沉淀剂的类型也会影响纳米粒子的尺寸和磁化强度,NaOH导致SPMNPs的合成与NH3相比具有更高的磁化强度(~4倍)。此外,在pH10下合成的纳米颗粒比在pH8和12下合成的纳米颗粒表现出更高的磁化强度。总之,优化的合成条件对SPMNPs的磁化强度和稳定性有显著影响。这些纳米颗粒适用于磁性纳米流体热疗应用。
    Superparamagnetic nanoparticles (SPMNPs) have attracted considerable attention in biomedicine, particularly magnetic hyperthermia for cancer treatment. However, the development of efficient and eco-friendly methods for synthesizing SPMNPs remains a challenge. This study reports on a green synthesis approach for SPMNPs using pomegranate peel extract as a stabilizing agent. The effects of various synthesis parameters, including the type of precipitating agent (NH3 and NaOH), N2 gas, extract volume, and pH, were systematically investigated with regard to the size, morphology, and magnetic properties of the nanoparticles. The results showed that reducing the volume of the extract increased the saturation magnetization of the nanoparticles. N2 gas was found to be essential in preventing the oxidation of the nanoparticles. The type of precipitating agent also affected the size and magnetization of the nanoparticles, with NaOH leading to the synthesis of SPMNPs with higher magnetization (∼4 times) compared to NH3. Additionally, nanoparticles synthesized at pH 10 exhibited higher magnetization than those synthesized at pH 8 and 12. In conclusion, the optimized synthesis conditions significantly affected the magnetization and stability of SPMNPs. These nanoparticles are suitable for use in magnetic nanofluid hyperthermia applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    显示独特磁性的氧化铁纳米花(IONFs)可以通过大约20年前由Caruntu等人首次引入的多元醇路线合成。呈现多核形态,其中几个晶粒(约10nm)附着在一起并烧结。这些突出的性能是非常感兴趣的磁场热疗,这被认为是一种有前途的抗癌疗法。尽管直径明显较小,IONFs的比吸附率(SAR)达到与“磁小体”一样大的值,“磁小体”是在某些细菌中发现的天然磁性纳米颗粒,通常为〜40nm,它可以人工生长,但与化学合成如多元醇路线相比,产率要低得多。这项工作旨在更好地理解结构-属性关系,通过HR-TEM观察到的内部IONF纳米结构与它们的磁性能连接。提出了单核和多核IONF库,直径范围从11到30纳米在一个狭窄的尺寸分布。更具体地说,通过将它们的结构特征与通过在宽范围的交变磁场条件下利用交流磁力法研究的磁性能相关联,我们表明,所有合成批次的SAR值随总体直径和构成岩心的数量而变化。
    Iron oxide nanoflowers (IONFs) that display singular magnetic properties can be synthesized through a polyol route first introduced almost 2 decades ago by Caruntu et al, presenting a multi-core morphology in which several grains (around 10 nm) are attached together and sintered. These outstanding properties are of great interest for magnetic field hyperthermia, which is considered as a promising therapy against cancer. Although of significantly smaller diameter, the specific adsorption rate (SAR) of IONFs reach values as large as for \"magnetosomes\" that are natural magnetic nanoparticles typically ~40 nm found in certain bacteria, which can be grown artificially but with much lower yield compared to chemical synthesis such as the polyol route. This work aims at better understanding the structure-property relationships, linking the internal IONF nanostructure as observed by HR-TEM to their magnetic properties. A library of mono- and multicore IONFs is presented, with diameters ranging from 11 to 30 nm in a narrow size distribution. More particularly, by relating their structural features to their magnetic properties investigated by utilizing AC magnetometry over a wide range of alternating magnetic field conditions, we showed that the SAR values of all synthesized batches vary with overall diameter and number of constituting cores.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    磁热疗法(MH)已成为一种有前途的技术,在医学和技术领域具有广泛的应用。利用通过交变磁场的温度升高的远程感应。虽然平均尺寸约为12-25nm的Fe3O4纳米颗粒通常用于MH系统,这项研究引入了一种策略,以产生更小的颗粒(小于或等于10nm),并提高加热效率,通过比功率吸收(SPA)测量。我们对CoxFe3-xO4纳米粒子的形态和磁性进行了详尽而详细的研究,旨在优化他们的MH反应。通过改变Co含量,我们成功地调整了有效的磁各向异性,同时保持饱和磁化强度几乎恒定。MH分析表明,这些纳米粒子主要通过Néel机制加热,证明了在不同浓度下的强大再现性,粘度介质,和交流现场条件。值得注意的是,我们确定了使SPA最大化的最佳各向异性或Co浓度,对于开发需要特定尺寸颗粒的磁性系统至关重要。这项工作有助于推进对MH的理解和应用,特别是在定制纳米粒子的性能,在各种情况下有针对性的和有效的产生热量。
    Magnetic hyperthermia (MH) has emerged as a promising technology with diverse applications in medical and technological fields, leveraging the remote induction of temperature elevation through an alternating magnetic field. While Fe3O4 nanoparticles with an average size around 12-25 nm are commonly employed in MH systems, this study introduces a strategy to produce smaller particles (less than or equal to 10 nm) with enhanced heating efficiency, as measured by specific power absorption (SPA). We conducted an exhaustive and detailed investigation into the morphological and magnetic properties of CoxFe3-xO4 nanoparticles, aiming to optimize their MH response. By varying the Co content, we successfully tuned the effective magnetic anisotropy while maintaining saturation magnetization nearly constant. The MH analysis indicates that these nanoparticles predominantly heat through the Néel mechanism, demonstrating robust reproducibility across different concentrations, viscosity mediums, and ac field conditions. Notably, we identified an optimal anisotropy or Co concentration that maximizes SPA, crucial for developing magnetic systems requiring particles with specific sizes. This work contributes to advancing the understanding and application of MH, particularly in tailoring nanoparticle properties for targeted and efficient heat generation in various contexts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    当赋予可编程的拆解策略时,蛋白质笼是用于控制治疗剂和显像剂递送的有前途的工具。这里,我们生产了由烟草花叶病毒(TMV)和磁性氧化铁纳米颗粒(IONP)制成的混合纳米复合材料,旨在使用磁性诱导的热量释放来破坏病毒蛋白质笼。我们使用(1)用磁性氧化铁纳米颗粒(TMV@IONP)异质包被的TMV的细长纳米复合材料和(2)聚苯乙烯(PS)的球形纳米复合材料,研究了这种磁性热疗对可编程病毒蛋白衣壳分解的影响,我们通过逐层自组装(PS@IONPs/TMV)在其上沉积了预合成的IONPs和TMV。值得注意的是,我们发现蛋白质笼的分解程度取决于磁性纳米颗粒的比吸收率(SAR),也就是说,加热效率,以及蛋白质笼在纳米复合材料中的相对位置与加热源有关。这意味着混合纳米结构内的组分的空间排列对拆卸过程具有显著影响。理解和优化这种关系将有助于使用蛋白质笼进行靶向药物和基因递送的关键时空控制。
    Protein cages are promising tools for the controlled delivery of therapeutics and imaging agents when endowed with programmable disassembly strategies. Here, we produced hybrid nanocomposites made of tobacco mosaic virus (TMV) and magnetic iron oxide nanoparticles (IONPs), designed to disrupt the viral protein cages using magnetically induced release of heat. We studied the effects of this magnetic hyperthermia on the programmable viral protein capsid disassembly using (1) elongated nanocomposites of TMV coated heterogeneously with magnetic iron oxide nanoparticles (TMV@IONPs) and (2) spherical nanocomposites of polystyrene (PS) on which we deposited presynthesized IONPs and TMV via layer-by-layer self-assembly (PS@IONPs/TMV). Notably, we found that the extent of the disassembly of the protein cages is contingent upon the specific absorption rate (SAR) of the magnetic nanoparticles, that is, the heating efficiency, and the relative position of the protein cage within the nanocomposite concerning the heating sources. This implies that the spatial arrangement of components within the hybrid nanostructure has a significant impact on the disassembly process. Understanding and optimizing this relationship will contribute to the critical spatiotemporal control for targeted drug and gene delivery using protein cages.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    癌症是全球性的重大公共卫生问题。尽管在癌症诊断和治疗方面已经取得了惊人的进步,科学界继续努力开发治疗癌症的新方法。这项工作的主要目的是准备,使用绿色溶胶-凝胶法与椰子水粉(CWP),一种新的纳米复合材料,由Gd3Fe5O12和ZnFe2O4组成,以前从未合成过。因此,我们进行了结构(DTA-TG和X射线衍射),形态学(SEM),和磁性(VSM和热疗)表征制备的样品。制备的纳米复合材料在室温下的饱和磁化强度为11.56emu/g,具有铁磁行为,比吸收率(SAR)值为0.5±0.2(W/g)。关于细胞毒性,对于浓度<10mg/mL,它似乎没有毒性。虽然获得的结果很有趣,高粒度被认为是使用这种纳米复合材料的问题。
    Cancer is a major worldwide public health problem. Although there have already been astonishing advances in cancer diagnosis and treatment, the scientific community continues to make huge efforts to develop new methods to treat cancer. The main objective of this work is to prepare, using a green sol-gel method with coconut water powder (CWP), a new nanocomposite with a mixture of Gd3Fe5O12 and ZnFe2O4, which has never been synthesized previously. Therefore, we carried out a structural (DTA-TG and X-ray diffraction), morphological (SEM), and magnetic (VSM and hyperthermia) characterization of the prepared samples. The prepared nanocomposite denoted a saturation magnetization of 11.56 emu/g at room temperature with a ferromagnetic behavior and with a specific absorption rate (SAR) value of 0.5 ± 0.2 (W/g). Regarding cytotoxicity, for concentrations < 10 mg/mL, it does not appear to be toxic. Although the obtained results were interesting, the high particle size was identified as a problem for the use of this nanocomposite.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:磁性热疗(MHT)已成为放射肿瘤学领域中一种有前途的治疗方法,因为与常规热疗相比,它在控制温度和管理加热区域方面具有出色的精度。最近的研究提出了解决与MHT相关的临床安全问题的解决方案。这是由于使用高浓度的磁性纳米颗粒和引起高热效应所需的强磁场而产生的。尽管做出了这些努力,在量化治疗结果和开发MHT与放射治疗(RT)相结合的治疗计划系统方面仍然存在挑战.
    目的:本研究旨在定量测量治疗效果,包括磁热-辐射联合治疗(MHRT)中的辐射剂量增强(RDE),采用等效辐射剂量(EQD)估算方法。
    方法:要对MHRT进行EQD估算,我们比较了常规热疗-放疗联合治疗(HTRT)和MHRT在人前列腺癌细胞系中的治疗效果,PC3和LNCaP。我们采用克隆实验来验证RDE和MHT诱导的放射增敏作用。使用线性四元模型和Arrhenius模型分析了存活分数的数据,以通过最大似然估计来估计描述RDE和MHRT对两种细胞系的放射增敏作用的生物学参数。基于这些参数,提出了一种新的生存分数模型来估计MHRT的EQD。
    结果:新设计的描述MHRT效应的模型,有效地捕获两种细胞系的热和辐射剂量的变化(R2>0.95),并通过残差正态检验证实了其适用性。该模型适当地描述了在仅RT条件下PC3细胞高达10Gy和LNCaP细胞高达8Gy的存活分数。此外,使用新定义的参数r,RDE效应在PC3细胞中为29%,在LNCaP细胞中为23%。当给予2Gy和MHT30分钟时,通过该模型计算的EQDMHRT对于PC3为9.47Gy,对于LNCaP为4.71Gy。与EQDHTRT相比,EQDMHRT显示PC3增加26%,LNCaP增加20%。
    结论:提出的模型有效地描述了两种细胞系中MHRT诱导的存活分数的变化,并通过残差分析充分代表了实际数据值。新建议的RDE效应参数r显示了HTRT和MHRT之间定量比较的潜力,并优化MHRT对前列腺癌的治疗效果。
    BACKGROUND: Magnetic hyperthermia (MHT) has emerged as a promising therapeutic approach in the field of radiation oncology due to its superior precision in controlling temperature and managing the heating area compared to conventional hyperthermia. Recent studies have proposed solutions to address clinical safety concerns associated with MHT, which arise from the use of highly concentrated magnetic nanoparticles and the strong magnetic field needed to induce hyperthermic effects. Despite these efforts, challenges remain in quantifying therapeutic outcomes and developing treatment plan systems for combining MHT with radiation therapy (RT).
    OBJECTIVE: This study aims to quantitatively measure the therapeutic effect, including radiation dose enhancement (RDE) in the magnetic hyperthermia-radiation combined therapy (MHRT), using the equivalent radiation dose (EQD) estimation method.
    METHODS: To conduct EQD estimation for MHRT, we compared the therapeutic effects between the conventional hyperthermia-radiation combined therapy (HTRT) and MHRT in human prostate cancer cell lines, PC3 and LNCaP. We adopted a clonogenic assay to validate RDE and the radiosensitizing effect induced by MHT. The data on survival fractions were analyzed using both the linear-quadradic model and Arrhenius model to estimate the biological parameters describing RDE and radiosensitizing effect of MHRT for both cell lines through maximum likelihood estimation. Based on these parameters, a new survival fraction model was suggested for EQD estimation of MHRT.
    RESULTS: The newly designed model describing the MHRT effect, effectively captures the variations in thermal and radiation dose for both cell lines (R2 > 0.95), and its suitability was confirmed through the normality test of residuals. This model appropriately describes the survival fractions up to 10 Gy for PC3 cells and 8 Gy for LNCaP cells under RT-only conditions. Furthermore, using the newly defined parameter r, the RDE effect was calculated as 29% in PC3 cells and 23% in LNCaP cells. EQDMHRT calculated through this model was 9.47 Gy for PC3 and 4.71 Gy for LNCaP when given 2 Gy and MHT for 30 min. Compared to EQDHTRT, EQDMHRT showed a 26% increase for PC3 and a 20% increase for LNCaP.
    CONCLUSIONS: The proposed model effectively describes the changes of the survival fraction induced by MHRT in both cell lines and adequately represents actual data values through residual analysis. Newly suggested parameter r for RDE effect shows potential for quantitative comparisons between HTRT and MHRT, and optimizing therapeutic outcomes in MHRT for prostate cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    磁性粒子热疗(MPH)能够利用交变磁场(AMF)直接加热实体瘤。MPH的一个挑战是注射后组织中未知的颗粒分布。磁性颗粒成像(MPI)可以测量纳米颗粒在递送后组织中的含量和分布。这项研究的目的是开发一种临床可翻译的协议,该协议将MPI数据纳入有限元计算中,以模拟MPH期间的组织温度。要验证协议,我们在荷瘤小鼠尸体中进行了MPH实验.将5只携带皮下4T1肿瘤的8-10周龄雌性BALB/c小鼠麻醉并接受肿瘤内注射Synomag®-S90纳米颗粒。注射后立即,将小鼠安乐死并成像,肿瘤用AMF加热.我们使用MimicsInnovationSuite从微型计算机断层扫描数据和空间指数MPI创建肿瘤的3D网格,以生成用于传热计算的缩放加热函数。将处理后的成像数据合并到有限元求解器中,COMSOLMultiphysics®。所有五个尸体的模拟肿瘤温度的上限和下限与实验温度测量结果一致,从而验证协议。这些结果证明了MPI指导MPH治疗计划的预测性热计算的实用性。
    Magnetic particle hyperthermia (MPH) enables the direct heating of solid tumors with alternating magnetic fields (AMFs). One challenge with MPH is the unknown particle distribution in tissue after injection. Magnetic particle imaging (MPI) can measure the nanoparticle content and distribution in tissue after delivery. The objective of this study was to develop a clinically translatable protocol that incorporates MPI data into finite element calculations for simulating tissue temperatures during MPH. To verify the protocol, we conducted MPH experiments in tumor-bearing mouse cadavers. Five 8-10-week-old female BALB/c mice bearing subcutaneous 4T1 tumors were anesthetized and received intratumor injections of Synomag®-S90 nanoparticles. Immediately following injection, the mice were euthanized and imaged, and the tumors were heated with an AMF. We used the Mimics Innovation Suite to create a 3D mesh of the tumor from micro-computerized tomography data and spatial index MPI to generate a scaled heating function for the heat transfer calculations. The processed imaging data were incorporated into a finite element solver, COMSOL Multiphysics®. The upper and lower bounds of the simulated tumor temperatures for all five cadavers demonstrated agreement with the experimental temperature measurements, thus verifying the protocol. These results demonstrate the utility of MPI to guide predictive thermal calculations for MPH treatment planning.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过热休克蛋白(HSP)的产生介导的热应激反应(HSR)的诱导暴露于磁热介导的癌症治疗(MHCT)降低了肿瘤部位局部热处理的功效,因此治疗仍然是一个重大挑战。因此,本研究检查了在不同肿瘤微环境条件下MHCT后在神经胶质瘤细胞中引起的差异HSR(2D单层,3D单一文化,和共培养球体)来识别目标基因,当下调时,可以增强MHCT的治疗效果。MHCT后的基因表达分析显示,与HSP70相比,HSP90上调。因此,为了提高治疗效果,研究了MHCT后使用17-DMAG作为HSP90抑制剂的组合策略。组合疗法对细胞活力的影响,HSP水平通过免疫荧光和基因表达分析,氧化应激的产生,并评估了细胞完整性的改变,其中组合疗法显示出增强的治疗结果,最大的神经胶质瘤细胞死亡。Further,在鼠神经胶质瘤模型中,在8天内在原发性和继发性肿瘤部位观察到65%和53%的快速肿瘤抑制,分别,在MCHT+17-DMAG组中,在MHCT的20天内,在两个肿瘤部位均具有abscopal效应介导的完全肿瘤抑制。从垂死的肿瘤细胞中释放的HSP90进一步表明,在MHCT17-DMAG组中,IFN-γ和钙网蛋白基因的上调支持了免疫反应的诱导。总的来说,我们的发现表明,MHCT激活宿主免疫系统,并与HSP90阻断剂有效合作,从而抑制远处转移肿瘤的生长.
    The induction of heat stress response (HSR) mediated by the generation of heat shock proteins (HSPs) on exposure to magnetic hyperthermia-mediated cancer therapy (MHCT) decreases the efficacy of localized heat treatment at the tumor site, and thus therapy remains a significant challenge. Hence, the present study examined differential HSR elicited in glioma cells post-MHCT under different tumor microenvironment conditions (2D monolayers, 3D monoculture, and coculture spheroids) to recognize target genes that, when downregulated, could enhance the therapeutic effect of MHCT. Gene expression analysis following MHCT revealed that HSP90 was upregulated as compared to HSP70. Hence, to enhance the efficacy of the treatment, a combinatorial strategy using 17-DMAG as an inhibitor of HSP90 following MHCT was investigated. The effects of combinatorial therapy in terms of cell viability, HSP levels by immunofluorescence and gene expression analysis, oxidative stress generation, and alterations in cellular integrity were evaluated, where combinatorial therapy demonstrated an enhanced therapeutic outcome with maximum glioma cell death. Further, in the murine glioma model, a rapid tumor inhibition of 65 and 53% was observed within 8 days at the primary and secondary tumor sites, respectively, in the MCHT + 17-DMAG group, with abscopal effect-mediated complete tumor inhibition at both the tumor sites within 20 days of MHCT. The extracellularly released HSP90 from dying tumor cells further suggested the induction of immune response supported by the upregulation of IFN-γ and calreticulin genes in the MHCT + 17-DMAG group. Overall, our findings indicate that MHCT activates host immune systems and efficiently cooperates with the HSP90 blockade to inhibit the growth of distant metastatic tumors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    与正常细胞相比,癌细胞具有更高的热敏感性;因此,热疗是一种很有前途的癌症治疗方法,因为它能够通过加热来选择性地杀死癌细胞。然而,肿瘤组织的特异性和快速加热仍然具有挑战性.这项研究调查了用肿瘤归巢肽(THP)修饰的磁性纳米颗粒(MNPs)的潜力,特别是PL1和PL3,用于肿瘤特异性磁热治疗。THP修饰的MNPs的合成涉及PL1和PL3肽与MNPs表面的连接,这促进了增强的肿瘤细胞结合和内化。细胞特异性研究显示,与未修饰的MNPs相比,肿瘤细胞对PL1-和PL3-MNPs的摄取增加。表明他们有针对性的交付潜力。体外热疗实验证明了PL3-MNPs在暴露于交变磁场(AMF)时诱导肿瘤细胞死亡的功效。即使不接触AMF,另一个铁途径被认为是由纳米颗粒介导的。因此,这项研究表明,THP修饰的MNPs,特别是PL3-MNPs,有望成为肿瘤特异性磁热疗法的靶向方法。
    Cancer cells have higher heat sensitivity compared to normal cells; therefore, hyperthermia is a promising approach for cancer therapy because of its ability to selectively kill cancer cells by heating them. However, the specific and rapid heating of tumor tissues remains challenging. This study investigated the potential of magnetic nanoparticles (MNPs) modified with tumor-homing peptides (THPs), specifically PL1 and PL3, for tumor-specific magnetic hyperthermia therapy. The synthesis of THP-modified MNPs involved the attachment of PL1 and PL3 peptides to the surface of the MNPs, which facilitated enhanced tumor cell binding and internalization. Cell specificity studies revealed an increased uptake of PL1- and PL3-MNPs by tumor cells compared to unmodified MNPs, indicating their potential for targeted delivery. In vitro hyperthermia experiments demonstrated the efficacy of PL3-MNPs in inducing tumor cell death when exposed to an alternating magnetic field (AMF). Even without exposure to an AMF, an additional ferroptotic pathway was suggested to be mediated by the nanoparticles. Thus, this study suggests that THP-modified MNPs, particularly PL3-MNPs, hold promise as a targeted approach for tumor-specific magnetic hyperthermia therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号