machine-learning interatomic potential

机器学习原子间势
  • 文章类型: Journal Article
    聚丙烯腈(PAN)是一种重要的商用聚合物,具有非选择性自由基聚合产生的无规立构立体化学。因此,一个准确的,对控制PAN分子单元之间相互作用的基本理解对于以降低的加工成本推进最终产品的设计原则是必不可少的。虽然从头算分子动力学(AIMD)模拟可以为处理极性聚合物中的关键相互作用提供必要的准确性,如偶极-偶极相互作用和氢键,分析它们对分子取向的影响,它们的实现仅限于小分子。在这里,我们表明,在小规模AIMD数据(低聚物获得)上训练的神经网络原子间势(NNIP)可以有效地用于检查大规模(聚合物)的结构和性质。NNIP提供了对链内和链间氢键键合和偶极相关性的关键见解,并通过对实验X射线结构因子进行建模来准确预测无定形块状PAN结构。此外,NNIP预测的PAN属性,如密度和弹性模量,与他们的实验值非常吻合。总的来说,发现弹性模量的趋势与Hermans取向因子中编码的PAN结构取向密切相关。这项研究能够预测PAN和类似物的结构-性质关系,并具有可持续的从头算准确性。
    Polyacrylonitrile (PAN) is an important commercial polymer, bearing atactic stereochemistry resulting from nonselective radical polymerization. As such, an accurate, fundamental understanding of governing interactions among PAN molecular units is indispensable for advancing the design principles of final products at reduced processability costs. While ab initio molecular dynamics (AIMD) simulations can provide the necessary accuracy for treating key interactions in polar polymers, such as dipole-dipole interactions and hydrogen bonding, and analyzing their influence on the molecular orientation, their implementation is limited to small molecules only. Herein, we show that the neural network interatomic potentials (NNIPs) that are trained on the small-scale AIMD data (acquired for oligomers) can be efficiently employed to examine the structures and properties at large scales (polymers). NNIP provides critical insight into intra- and interchain hydrogen-bonding and dipolar correlations and accurately predicts the amorphous bulk PAN structure validated by modeling the experimental X-ray structure factor. Furthermore, the NNIP-predicted PAN properties, such as density and elastic modulus, are in good agreement with their experimental values. Overall, the trend in the elastic modulus is found to correlate strongly with the PAN structural orientations encoded in the Hermans orientation factor. This study enables the ability to predict the structure-property relations for PAN and analogues with sustainable ab initio accuracy across scales.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Mg3(Sb1-xBix)2合金在过去5年中由于其优异的热电(TE)性能而被广泛研究。无机合金化合物缺乏精确的力场对计算研究提出了巨大的挑战。这里,我们探索原子的微观结构,热,和弹性性质的Mg3(Sb1-xBix)2合金在不同的溶液浓度通过原子模拟与高度精确的机器学习原子间势(ML-IAP)。我们在优化结构中发现原子局部有序,Bi-Bi对倾向于连接相邻层,Sb-Sb对倾向于留在同一层内。通过基于ML-IAP的分子动力学模拟,可以正确预测热导率随溶液浓度的变化。光谱热导分析表明,低频峰向高频的连续移动是合金化时热导率降低的原因。弹性计算表明,与热导率相似,固溶合金化可以降低Mg3Sb2和Mg3Bi2两端的整体弹性性能,而各向异性行为在沿层间方向合金化和沿层内方向非线性时清楚地观察到线性插值关系。尽管原子局部有序对只有两种合金元素的Mg3(Sb1-xBix)2合金的性能影响很小,它对多主元素无机TE合金具有潜在的重要影响。这项工作为TE合金系统的计算研究提供了一种方法,因此可以加速发现和优化具有高TE性能的TE材料。
    Mg3(Sb1-xBix)2 alloy has been extensively studied in the last 5 years due to its exceptional thermoelectric (TE) performance. The absence of accurate force field for inorganic alloy compounds presents great challenges for computational studies. Here, we explore the atomic microstructure, thermal, and elastic properties of the Mg3(Sb1-xBix)2 alloy at different solution concentrations through atomic simulations with a highly accurate machine learning interatomic potential (ML-IAP). We find atomic local ordering in the optimized structure with the Bi-Bi pair inclined to join adjacent layers and Sb-Sb pair preferring to stay within the same layer. The thermal conductivity changes with the solution concentrations can be correctly predicted through ML-IAP-based molecular dynamics simulations. Spectral thermal conductance analysis shows that the continuous movement of low-frequency peak to high frequency is responsible for the reduction of the thermal conductivity upon alloying. Elastic calculations reveal that similar to the thermal conductivity, solid solution alloying can reduce the overall elastic properties at both Mg3Sb2 and Mg3Bi2 ends, while anisotropic behavior is clearly observed with linear interpolation relationship upon alloying along the interlayer direction and nonlinearity along the intralayer direction. Although the atomic local ordering shows little effects on the properties of the Mg3(Sb1-xBix)2 alloy with only two alloying elements, it possesses potential important impacts on multiprincipal element inorganic TE alloys. This work provides a recipe for computational studies on the TE alloy systems and thus can accelerate the discovery and optimization of TE materials with high TE performance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号