lysosome acidification

溶酶体酸化
  • 文章类型: Journal Article
    维持高酸性溶酶体pH是细胞生理学的核心。这里,我们使用功能蛋白质组学,单粒子低温EM,电生理学,和体内成像,以揭示人溶酶体相关膜蛋白(LAMP-1和LAMP-2)在调节溶酶体pH稳态中的关键生物学功能。尽管被广泛用作溶酶体标记,LAMP蛋白的生理功能一直被忽视。我们表明LAMP-1和LAMP-2直接与溶酶体阳离子通道TMEM175相互作用并抑制其活性,TMEM175是与帕金森氏病有关的溶酶体pH稳态的关键参与者。这种LAMP抑制减轻了TMEM175的质子传导,并促进溶酶体酸化至对最佳水解酶活性至关重要的较低pH环境。破坏LAMP-TMEM175相互作用使溶酶体pH碱化并损害溶酶体水解功能。鉴于溶酶体对细胞生理学和疾病的重要性日益增加,我们的数据对溶酶体生物学有广泛的影响.
    Maintaining a highly acidic lysosomal pH is central to cellular physiology. Here, we use functional proteomics, single-particle cryo-EM, electrophysiology, and in vivo imaging to unravel a key biological function of human lysosome-associated membrane proteins (LAMP-1 and LAMP-2) in regulating lysosomal pH homeostasis. Despite being widely used as a lysosomal marker, the physiological functions of the LAMP proteins have long been overlooked. We show that LAMP-1 and LAMP-2 directly interact with and inhibit the activity of the lysosomal cation channel TMEM175, a key player in lysosomal pH homeostasis implicated in Parkinson\'s disease. This LAMP inhibition mitigates the proton conduction of TMEM175 and facilitates lysosomal acidification to a lower pH environment crucial for optimal hydrolase activity. Disrupting the LAMP-TMEM175 interaction alkalinizes the lysosomal pH and compromises the lysosomal hydrolytic function. In light of the ever-increasing importance of lysosomes to cellular physiology and diseases, our data have widespread implications for lysosomal biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    猪流行性腹泻病毒(PEDV),属于α-冠状病毒,是猪流行性腹泻(PED)的病原体。目前,从现有的PEDV疫苗的保护是无效的。因此,抗PEDV化合物应进行研究。小檗碱(BBM),Fangchinoline(FAN),和(+)-Fangchinoline(+FAN),是从天然药用植物中提取的双苄基异喹啉生物碱的类型。这些双苄基异喹啉生物碱具有多种生物活性,包括抗病毒,抗癌,和抗炎特性。在这项研究中,我们发现BBM,风扇,和+FAN抑制PEDV活性,50%抑制浓度为9.00µM,3.54µM,和4.68µM,分别。此外,这些生物碱可以在体外降低PEDV-N蛋白水平和病毒滴度。添加时间测定结果表明,这些生物碱主要抑制PEDV进入。我们还发现BBM的抑制作用,风扇,PEDV和+FAN依赖于通过抑制溶酶体酸化来降低组织蛋白酶L(CTSL)和组织蛋白酶B(CTSB)的活性。一起来看,这些结果表明,BBM,风扇,和+FAN是有效的抗PEDV天然产物,可防止PEDV进入,可能被认为是新型抗病毒药物。
    The porcine epidemic diarrhea virus (PEDV), belonging to the α-coronavirus, is the causative agent of porcine epidemic diarrhea (PED). Presently, protection from the existing PEDV vaccine is not effective. Therefore, anti-PEDV compounds should be studied. Berbamine (BBM), Fangchinoline (FAN), and (+)-Fangchinoline (+FAN), are types of bis-benzylisoquinoline alkaloids that are extracted from natural medicinal plants. These bis-benzylisoquinoline alkaloids have various biological activities, including antiviral, anticancer, and anti-inflammatory properties. In this study, we found that BBM, FAN, and +FAN suppressed PEDV activity with a 50% inhibitory concentration of 9.00 µM, 3.54 µM, and 4.68 µM, respectively. Furthermore, these alkaloids can decrease the PEDV-N protein levels and virus titers in vitro. The time-of-addition assay results showed that these alkaloids mainly inhibit PEDV entry. We also found that the inhibitory effects of BBM, FAN, and +FAN on PEDV rely on decreasing the activity of Cathepsin L (CTSL) and Cathepsin B (CTSB) by suppressing lysosome acidification. Taken together, these results indicated that BBM, FAN, and +FAN were effective anti-PEDV natural products that prevented PEDV entry and may be considered novel antiviral drugs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    纤维素纳米晶体(CNCs)具有显著的强度和物理化学性质,具有显著的潜在应用。为了更好地理解纳米材料的潜在佐剂,重要的是调查免疫反应的程度,他们引发这种反应的机制,以及这种反应如何与它们的物理化学特征相关联。在这项研究中,我们研究了两种化学相关的阳离子CNC衍生物(CNC-METAC-1B和CNC-METAC-2B)的免疫调节和氧化还原活性的潜在机制,使用人外周血单核细胞和小鼠巨噬细胞(J774A.1)。我们的数据表明,这些纳米材料引起的生物效应主要发生在短期暴露中。我们在测试的纳米材料之间观察到相反的免疫调节活性。CNC-METAC-2B,在2小时诱导IL-1β分泌,而CNC-METAC-1B在治疗24小时降低IL-1β分泌。此外,两种纳米材料在早期引起线粒体活性氧(ROS)更明显的增加。两种阳离子纳米材料的表观尺寸差异可以解释,至少在某种程度上,生物效应的差异,尽管它们密切相关的表面电荷。这项工作提供了有关这些纳米材料体外作用机制复杂性的初步见解,以及阳离子CNCs作为潜在免疫调节剂开发的基础知识。
    Cellulose nanocrystals (CNCs) display remarkable strength and physicochemical properties with significant potential applications. To better understand the potential adjuvanticity of a nanomaterial, it is important to investigate the extent of the immunological response, the mechanisms by which they elicit this response, and how this response is associated with their physicochemical characteristics. In this study, we investigated the potential mechanisms of immunomodulation and redox activity of two chemically related cationic CNC derivatives (CNC-METAC-1B and CNC-METAC-2B), using human peripheral blood mononuclear cells and mouse macrophage cells (J774A.1). Our data demonstrated that the biological effects caused by these nanomaterials occurred mainly with short term exposure. We observed opposite immunomodulatory activity between the tested nanomaterials. CNC-METAC-2B, induced IL-1β secretion at 2 h while CNC-METAC-1B decreased it at 24 h of treatment. In addition, both nanomaterials caused more noticeable increases in mitochondrial reactive oxygen species (ROS) at early time. The differences in apparent sizes of the two cationic nanomaterials could explain, at least in part, the discrepancies in biological effects, despite their closely related surface charges. This work provides initial insights about the complexity of the in vitro mechanism of action of these nanomaterials as well as foundation knowledge for the development of cationic CNCs as potential immunomodulators.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:探讨H+/K+ATP酶在胃蛋白酶诱导的声带白斑(VCL)细胞增殖中的作用。
    方法:翻译研究。
    方法:大学附属医院.
    方法:免疫组化法检测胃蛋白酶,H+/K+ATPase(ATP4A和ATP4B亚基)在VCL细胞中有不同程度的异型增生。建立VCL细胞的原代培养后,酸化胃蛋白酶对增殖的影响,自噬,研究了VCL细胞的H/K-ATPase分布。
    结果:胃蛋白酶的水平,ATP4A,和ATP4B在中度至重度发育不良的VCL组织中明显高于正常组织(p<0.05);这些水平根据发育不良的严重程度逐渐增加。ATP4A和ATP4B的表达水平与VCL细胞中胃蛋白酶的量显著相关(p<0.01)。酸化胃蛋白酶增强人VCL上皮细胞的增殖和自噬水平。酸化胃蛋白酶对VCL细胞的克隆和自噬促进作用被泮托拉唑部分逆转;这些作用被自噬抑制剂氯喹完全阻断。最后,酸化的胃蛋白酶促进H/K-ATPase和溶酶体在VCL细胞中的共定位;它还介导溶酶体酸化。
    结论:胃蛋白酶和H+/K+-ATP酶可能与VCL的进展有关。具体来说,酸化胃蛋白酶可通过促进H+/K+-ATP酶的溶酶体定位来调节溶酶体酸化。
    To investigate the role of H+ /K+ ATPase in the proliferation of pepsin-induced vocal cord leukoplakia (VCL) cells.
    Translation research.
    Affiliated Hospital of University.
    Immunohistochemistry was used to detect pepsin, H+ /K+ ATPase (ATP4A and ATP4B subunits) in VCL cells with varying degrees of dysplasia. After primary cultures of VCL cells had been established, the effects of acidified pepsin on the proliferation, autophagy, and H+ /K+ -ATPase distribution of VCL cells were investigated.
    The levels of pepsin, ATP4A, and ATP4B were significantly higher in VCL tissue with moderate-to-severe dysplasia than in normal tissue (p < .05); these levels gradually increased according to dysplasia severity. The expression levels of ATP4A and ATP4B were significantly correlated with the amount of pepsin in VCL cells (p < .01). Acidified pepsin enhanced the levels of proliferation and autophagy in human VCL epithelial cells. The cloning- and autophagy-promoting effects of acidified pepsin on VCL cells were partially reversed by pantoprazole; these effects were completely blocked by the autophagy inhibitor chloroquine. Finally, acidified pepsin promoted the colocalization of H+ /K+ -ATPase and lysosomes in VCL cells; it also mediated lysosome acidification.
    Pepsin and H+ /K+ -ATPase may contribute to the progression of VCL. Specifically, acidified pepsin may regulate lysosome acidification by promoting lysosomal localization of H+ /K+ -ATPase.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    溶酶体酸化是H+流入和流出跨膜的动态平衡,这对细胞生理学至关重要。液泡HATPase(V-ATPase)负责溶酶体的H流入或重新填充。TMEM175被鉴定为溶酶体膜上的新型H+渗透通道,它在溶酶体酸化中起着关键作用。然而,TMEM175如何参与溶酶体酸化尚不清楚.这里,我们提供的证据表明,TMEM175调节从接受vuluolin-1处理的COS1分离的扩大溶酶体中的溶酶体H+流入和流出。通过利用全内溶酶体膜片钳记录技术,在生理pH梯度(管腔pH4.60和胞质pH7.20)下,在10秒的时间范围内,从该体外系统记录了一系列整合的溶酶体H+流入和流出信号.溶酶体H+通量构成溶酶体H+再填充和释放,对于每个H通量,它们都是不对称的过程,具有不同的特征动力学。当TMEM175在F39V突变体中丧失功能并被拮抗剂(2-GBI)阻断时,溶酶体H通量完全消除。同时,溶酶体H+通量由管腔的pH缓冲能力和溶酶体糖基化膜蛋白调节,溶酶体相关膜蛋白1(LAMP1)。我们建议TMEM175介导的溶酶体H通量模型将为研究帕金森病和溶酶体贮积障碍的病理学提供新思路。
    Lysosome acidification is a dynamic equilibrium of H+ influx and efflux across the membrane, which is crucial for cell physiology. The vacuolar H+ ATPase (V-ATPase) is responsible for the H+ influx or refilling of lysosomes. TMEM175 was identified as a novel H+ permeable channel on lysosomal membranes, and it plays a critical role in lysosome acidification. However, how TMEM175 participates in lysosomal acidification remains unknown. Here, we present evidence that TMEM175 regulates lysosomal H+ influx and efflux in enlarged lysosomes isolated from COS1 treated with vacuolin-1. By utilizing the whole-endolysosome patch-clamp recording technique, a series of integrated lysosomal H+ influx and efflux signals in a ten-of-second time scale under the physiological pH gradient (luminal pH 4.60, and cytosolic pH 7.20) was recorded from this in vitro system. Lysosomal H+ fluxes constitute both the lysosomal H+ refilling and releasing, and they are asymmetrical processes with distinct featured kinetics for each of the H+ fluxes. Lysosomal H+ fluxes are entirely abolished when TMEM175 losses of function in the F39V mutant and is blocked by the antagonist (2-GBI). Meanwhile, lysosomal H+ fluxes are modulated by the pH-buffering capacity of the lumen and the lysosomal glycosylated membrane proteins, lysosome-associated membrane protein 1 (LAMP1). We propose that the TMEM175-mediated lysosomal H+ fluxes model would provide novel thoughts for studying the pathology of Parkinson\'s disease and lysosome storage disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    保护性自噬可以通过外部刺激激活,如化疗(CT)和光热治疗(PTT),导致肿瘤抵抗。作为自噬的关键亚细胞,溶酶体功能障碍对自噬抑制至关重要。此外,溶酶体药物螯合增强基本药物抗性,如阿霉素(DOX),它被困在远离目标地点的地方,即,核。此外,大多数纳米药物递送系统被内化为溶酶体降解,这进一步导致DOX抵抗。溶酶体是耐药机制中必不可少的细胞器,其酸化阻滞提供了同时抑制自噬和溶酶体药物隔离的潜在策略。氯通道3(ClC-3)蛋白被认为是一种重要的Cl-H转运蛋白,可在各种人类细胞的低值下维持溶酶体pH。在这里,构建了基于黑磷的BP-A-S@D纳米平台,以HeLa细胞为模型验证ClC-3对肿瘤溶酶体酸化和自噬调控的影响。因此,ClC-3沉默不仅抑制保护性自噬对化学光热疗法的敏感性,而且还通过抑制溶酶体酸化来抵抗DOX。因此,ClC-3沉默可以同时抑制自噬和溶酶体药物隔离,从而提高抗肿瘤效率。
    Protective autophagy can be activated by external stimuli such as chemotherapy (CT) and photothermal therapy (PTT), leading to tumour resistance. As a key subcellular for autophagy, lysosomal dysfunction is crucial for autophagy suppression. Furthermore, lysosomal drug sequestration enhances basic drug resistance such as doxorubicin (DOX), which is trapped away from its target site, namely, the nucleus. Moreover, most of nanodrug delivery systems are internalised to lysosome for degradation, which further leads to DOX resistance. Lysosome serves as an essential organelle in drug resistance mechanisms, whose acidification arrest provides a potential strategy to inhibit autophagy and lysosomal drug sequestration simultaneously. The chloride channel-3 (ClC-3) protein is known as an important Cl--H+ transporter to maintain lysosomal pH at low values of various human cells. Herein, a black phosphorus-based theranostic nanoplatform of BP-A-S@D is constructed, and HeLa cells are used as a model to verify the effect of ClC-3 on tumour lysosomal acidification and autophagy regulation. Consequently, ClC-3 silencing inhibits not only protective autophagy to sensitise chemo-photothermal therapy, but also DOX resistance by suppressing lysosomal acidification. Therefore, ClC-3 silencing could simultaneously inhibit autophagy and lysosomal drug sequestration to improve anti-tumour efficiency.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    遗传证据越来越多地将溶酶体功能障碍与阿尔茨海默病(AD)中自噬-溶酶体途径(ALP)通量受损联系起来,尽管这些异常与其他病理的关系尚不清楚。在我们最近对AD中自噬通量受损的起源的调查中,我们建立了缺陷性溶酶体在五种小鼠AD模型中的关键早期作用。为了评估体内自噬和ALP囊泡酸化的变化,我们在神经元中特异性表达eGFP-mRFP-LC3。我们发现,这些模型中的自噬功能障碍是由于自溶酶体/溶酶体酸化的异常早期失败引起的,然后驱动下游AD发病机制。在受损但仍然完整的神经元中的极端自噬应激导致含有毒性APP代谢物的自噬液泡(AVs),Aβ/β-CTFs,包装成巨大的气泡并从核膜突出。最值得注意的是,AV还与ER小管结合并在这些小管内产生纤维状β-淀粉样蛋白。总的来说,这些完整神经元内的淀粉样蛋白免疫反应性假定淀粉样蛋白斑块的出现,事实上,他们最终的死亡将它们转化为细胞外斑块病变。定量分析证实,经历这种转化的神经元是APP-AD模型中β-淀粉样蛋白斑的主要来源。这些发现促使重新考虑斑块形成中常规接受的事件序列,并可能有助于解释Aβ/淀粉样蛋白疫苗疗法的无效性。
    Genetic evidence has increasingly linked lysosome dysfunction to an impaired autophagy-lysosomal pathway (ALP) flux in Alzheimer disease (AD) although the relationship of these abnormalities to other pathologies is unclear. In our recent investigation on the origin of impaired autophagic flux in AD, we established the critical early role of defective lysosomes in five mouse AD models. To assess in vivo alterations of autophagy and ALP vesicle acidification, we expressed eGFP-mRFP-LC3 specifically in neurons. We discovered that autophagy dysfunction in these models arises from exceptionally early failure of autolysosome/lysosome acidification, which then drives downstream AD pathogenesis. Extreme autophagic stress in compromised but still intact neurons causes autophagic vacuoles (AVs) containing toxic APP metabolites, Aβ/β-CTFs, to pack into huge blebs and protrude from the perikaryon membrane. Most notably, AVs also coalesce with ER tubules and yield fibrillar β-amyloid within these tubules. Collectively, amyloid immunoreactivity within these intact neurons assumes the appearance of amyloid-plaques, and indeed, their eventual death transforms them into extracellular plaque lesions. Quantitative analysis confirms that neurons undergoing this transformation are the principal source of β-amyloid-plaques in APP-AD models. These findings prompt reconsideration of the conventionally accepted sequence of events in plaque formation and may help explain the inefficacy of Aβ/amyloid vaccine therapies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    体细胞的年龄和死亡,但是生殖细胞谱系是不朽的。在秀丽隐杆线虫中,种系永生涉及在每一代新世代开始时的蛋白质稳定更新,当精子的卵母细胞成熟信号触发了羰基化蛋白和蛋白聚集体的清除。这里,我们在全基因组RNAi筛选的背景下探索这种蛋白质停滞更新的细胞生物学。已知卵母细胞成熟信号通过溶酶体酸化触发蛋白质聚集体去除。我们的发现表明,由于内质网活性的变化,溶酶体被酸化,从而允许溶酶体V-ATPase组装,这反过来又允许溶酶体通过微自噬清除聚集体。我们定义了线粒体的两个功能,两者似乎都与ATP的产生无关。来自筛选的许多基因还调节溶酶体酸化和体细胞中年龄依赖性蛋白质聚集,表明种系的蛋白质停滞更新与体细胞寿命之间存在基本的机制联系。
    Somatic cells age and die, but the germ-cell lineage is immortal. In Caenorhabditis elegans, germline immortality involves proteostasis renewal at the beginning of each new generation, when oocyte maturation signals from sperm trigger the clearance of carbonylated proteins and protein aggregates. Here, we explore the cell biology of this proteostasis renewal in the context of a whole-genome RNAi screen. Oocyte maturation signals are known to trigger protein-aggregate removal via lysosome acidification. Our findings suggest that lysosomes are acidified as a consequence of changes in endoplasmic reticulum activity that permit assembly of the lysosomal V-ATPase, which in turn allows lysosomes to clear the aggregates via microautophagy. We define two functions for mitochondria, both of which appear to be independent of ATP generation. Many genes from the screen also regulate lysosome acidification and age-dependent protein aggregation in the soma, suggesting a fundamental mechanistic link between proteostasis renewal in the germline and somatic longevity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体自噬,选择性去除受损的线粒体,被认为是维持神经元稳态的关键。该通路中蛋白质的突变会导致神经退行性疾病,提示线粒体更新缺陷有助于神经变性。在原代大鼠海马神经元中,我们开发了一种线粒体自噬诱导模式,其中轻度氧化应激诱导低水平的线粒体损伤。线粒体自噬相关蛋白被顺序募集以使线粒体去极化,然后隔离到自噬体中。这些线粒体自噬事件的定位具有强烈的染色体偏倚。在基础和诱导条件下,吞噬的线粒体在非酸化细胞器中停留数小时至数天,说明了有效的自噬体隔离,但延迟的溶酶体融合或酸化。此外,ALS相关突变在该通路中的表达破坏了线粒体网络的完整性,氧化应激加剧了这种效应.因此,与年龄相关的神经元健康下降或通路中疾病相关突变的表达可能会加剧神经元线粒体自噬的缓慢动力学,导致神经变性.
    Mitophagy, the selective removal of damaged mitochondria, is thought to be critical to maintain neuronal homeostasis. Mutations of proteins in the pathway cause neurodegenerative diseases, suggesting defective mitochondrial turnover contributes to neurodegeneration. In primary rat hippocampal neurons, we developed a mitophagy induction paradigm where mild oxidative stress induced low levels of mitochondrial damage. Mitophagy-associated proteins were sequentially recruited to depolarized mitochondria followed by sequestration into autophagosomes. The localization of these mitophagy events had a robust somal bias. In basal and induced conditions, engulfed mitochondria remained in non-acidified organelles for hours to days, illustrating efficient autophagosome sequestration but delayed lysosomal fusion or acidification. Furthermore, expression of an ALS-linked mutation in the pathway disrupted mitochondrial network integrity and this effect was exacerbated by oxidative stress. Thus, age-related decline in neuronal health or expression of disease-associated mutations in the pathway may exacerbate the slow kinetics of neuronal mitophagy, leading to neurodegeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    热休克因子4(HSF4)的种系突变可引起先天性白内障。以前,我们已经证明HSF4参与调节小鼠晶状体上皮细胞的溶酶体pH。然而,潜在机制尚不清楚.
    本研究使用缺乏HSF4的小鼠晶状体上皮细胞系和斑马鱼。免疫印迹和定量RT-PCR用于表达分析。用GST-下拉法测试蛋白质-蛋白质相互作用。通过超速离心分离溶酶体。
    HSF4缺乏或αB-晶状体蛋白敲低会升高溶酶体pH,并增加蛋白酶体对ATP6V1A的泛素化和降解。αB-晶状体蛋白部分定位于溶酶体中,仅与V-ATPaseV1复合物的ATP6V1A蛋白相互作用。此外,在GST下拉测定中,αB-晶状体蛋白可以与mTORC1和ATP6V1A共沉淀。雷帕霉素或siRNA对mTORC1的抑制可导致αB-晶状体蛋白从ATP6V1A和mTORC1复合物中解离,缩短ATP6V1A的半衰期并增加溶酶体pH。ATP6V1A/S441A(预测的mTOR磷酸化位点)的突变减少了其与αB-晶状体蛋白的关联。在斑马鱼模型中,HSF4缺乏降低晶状体组织中的αB-晶状体蛋白表达并升高溶酶体pH。
    HSF4通过控制αB-晶状体蛋白与ATP6V1A和mTOR的结合和调节ATP6V1A蛋白稳定来调节溶酶体酸化。
    这项研究揭示了αB-晶状体蛋白的新功能,证明αB-晶状体蛋白可以通过与ATP6V1A和mTOR复合来调节溶酶体ATP6V1A蛋白的稳定。这突出了HSF4在晶状体发育过程中调节细胞器蛋白水解过程的新机制。
    Germline mutations in heat shock factor 4 (HSF4) cause congenital cataracts. Previously, we have shown that HSF4 is involved in regulating lysosomal pH in mouse lens epithelial cell in vitro. However, the underlying mechanism remains unclear.
    HSF4-deficient mouse lens epithelial cell lines and zebrafish were used in this study. Immunoblotting and quantitative RT-PCR were used for expression analysis. The protein-protein interactions were tested with GST-pull downs. The lysosomes were fractioned by ultracentrifugation.
    HSF4 deficiency or knock down of αB-crystallin elevates lysosomal pH and increases the ubiquitination and degradation of ATP6V1A by the proteasome. αB-crystallin localizes partially in the lysosome and interacts solely with the ATP6V1A protein of the V1 complex of V-ATPase. Furthermore, αB-crystallin can co-precipitate with mTORC1 and ATP6V1A in GST pull down assays. Inhibition of mTORC1 by rapamycin or siRNA can lead to dissociation of αB-crystallin from the ATP6V1A and mTORC1complex, shortening the half-life of ATP6V1A and increasing the lysosomal pH. Mutation of ATP6V1A/S441A (the predicted mTOR phosphorylation site) reduces its association with αB-crystallin. In the zebrafish model, HSF4 deficiency reduces αB-crystallin expression and elevates the lysosomal pH in lens tissues.
    HSF4 regulates lysosomal acidification by controlling the association of αB-crystallin with ATP6V1A and mTOR and regulating ATP6V1A protein stabilization.
    This study uncovers a novel function of αB-crystallin, demonstrating that αB-crystallin can regulate lysosomal ATP6V1A protein stabilization by complexing to ATP6V1A and mTOR. This highlights a novel mechanism by which HSF4 regulates the proteolytic process of organelles during lens development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号