lysine methylation

赖氨酸甲基化
  • 文章类型: Journal Article
    SET域包含7(SETD7),组蛋白甲基转移酶的成员,在多种肿瘤类型中异常表达。然而,SETD7在肾透明细胞癌(ccRCC)中的生物学功能和潜在的分子机制尚不清楚。这里,我们探讨了SETD7-TAF7-CCNA2轴对ccRCC增殖和转移的生物学效应。我们确定SETD7和TAF7均上调并显着促进ccRCC细胞的增殖和迁移。同时,SETD7和TAF7的表达呈显著正相关,二者在细胞核内共定位。机械上,SETD7在K5和K300位点甲基化TAF7,导致TAF7的去泛素化和稳定。此外,再表达TAF7可以部分恢复SETD7敲低抑制ccRCC细胞的增殖和迁移。此外,TAF7转录激活以驱动细胞周期蛋白A2(CCNA2)的表达。更重要的是,TAF7在K5和K300位点的甲基化表现出更高的CCNA2转录活性,促进ccRCC的形成和进展。我们的发现揭示了SETD7介导的TAF7甲基化在ccRCC进展中调节CCNA2转录激活的独特机制,并通过靶向SETD7-TAF7-CCNA2轴的成员为开发有效的治疗策略提供了基础。
    SET domain containing 7(SETD7), a member of histone methyltransferases, is abnormally expressed in multiple tumor types. However, the biological function and underlying molecular mechanism of SETD7 in clear cell renal cell carcinoma (ccRCC) remain unclear. Here, we explored the biological effects of SETD7-TAF7-CCNA2 axis on proliferation and metastasis in ccRCC. We identified both SETD7 and TAF7 were up-regulated and significantly promoted the proliferation and migration of ccRCC cells. Concurrently, there was a significant positive correlation between the expression of SETD7 and TAF7, and the two were colocalized in the nucleus. Mechanistically, SETD7 methylates TAF7 at K5 and K300 sites, resulting in the deubiquitination and stabilization of TAF7. Furthermore, re-expression of TAF7 could partially restore SETD7 knockdown inhibited ccRCC cells proliferation and migration. In addition, TAF7 transcriptionally activated to drive the expression of cyclin A2 (CCNA2). And more importantly, the methylation of TAF7 at K5 and K300 sites exhibited higher transcriptional activity of CCNA2, which promotes formation and progression of ccRCC. Our findings reveal a unique mechanism that SETD7 mediated TAF7 methylation in regulating transcriptional activation of CCNA2 in ccRCC progression and provide a basis for developing effective therapeutic strategies by targeting members of SETD7-TAF7-CCNA2 axis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    硼(B)的快速积累导致植物组织中的毒性,缺乏和毒性之间的狭窄差距使得难以调整土壤中的基本B水平以获得植物生产力。因此,了解B耐受性的不同方面是必要的,为B毒性提供新的和有效的解决方案。满天星是一种耐B植物的杰出例子,与自然倾向于在环境中茁壮成长,如B矿山和土壤富含高水平的B。使用来自G.perfoliata叶和根细胞的cDNA文库进行了酵母功能筛选实验。叶子库中的十个菌落在80毫米硼酸中生长,而根库中没有出现。分离的cDNA的分析显示相同的序列和与B耐受性相关的独特基序。基因GpEF1A在耐受酵母菌菌落中被鉴定,预测的结构特征表明了它的作用,和RT-qPCR表明在B胁迫下表达增加。在哺乳动物细胞和真菌中提出了EF1A赖氨酸甲基化的调节作用,因为它在环境约束下具有动态和可诱导的性质。这也可能与植物细胞有关,由于GpEF1A基因在某些耐盐植物中的高度相似性可能表明EF1A的上调是应对非生物胁迫条件的保守方法。本报告是GpEF1A参与B耐受性的第一例,和进一步详细的研究是必要的,以了解这种宽容机制的其他组成部分。
    Rapid accumulation of boron (B) leads to toxicity in plant tissues, and the narrow gap between deficiency and toxicity makes it difficult to adjust essential B levels in soil for plant productivity. Therefore, understanding different aspects of B tolerance is necessary to provide new and valid solutions to B toxicity. Gypsophila perfoliata stands out as a remarkable example of a B-tolerant plant, with a natural propensity to thrive in environments such as B mines and soils enriched with high levels of B. In this study, a yeast functional screening experiment was conducted using cDNA libraries from G. perfoliata leaf and root cells for B tolerance. Ten colonies from the leaf library grew in 80 mm boric acid, while none emerged from the root library. Analysis of isolated cDNAs showed identical sequences and a unique motif related to B tolerance. The gene GpEF1A was identified in the tolerant yeast colonies, with predicted structural features suggesting its role, and RT-qPCR indicating increased expression under B stress. A regulatory role for EF1A lysine methylation was proposed in mammalian cells and fungi because of its dynamic and inducible nature under environmental constraints. This could also be relevant for plant cells, as the high similarity of the GpEF1A gene in some salt-tolerant plants might indicate the upregulation of EF1A as a conserved way to cope with abiotic stress conditions. This report represents the first instance of involvement of GpEF1A in B tolerance, and further detailed studies are necessary to understand other components of this tolerance mechanism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:癌症干细胞样细胞是各种癌症治疗耐药和转移的关键屏障,包括乳腺癌,然而,潜在的机制仍然难以捉摸。通过全基因组lncRNA表达谱,我们发现LINC00115在化疗耐药的乳腺癌干细胞样细胞(BCSC)中强烈上调.
    方法:进行LncRNA微阵列分析以记录耐紫杉醇(PTX)的MDA-MB-231BCSC(ALDH)和非BCSC(ALDH-)中lncRNA的丰度变化。进行RNA下拉和RNA免疫沉淀(RIP)测定以确定LINC00115的结合蛋白。在TNBC转移性淋巴结组织中检查了LINC00115途径的临床意义。LINC00115的生物学功能通过功能增益和功能丧失研究进行了研究。通过RNA测序探索分子机制,质谱,和CRISPR/Cas9敲除系统。通过异种移植动物模型检查LINC00115的治疗潜力。
    结果:LINC00115作为支架lncRNA连接SETDB1和PLK3,导致耐药BCSC中K106和K200处PLK3的SETDB1甲基化增强。PLK3甲基化降低HIF1α的PLK3磷酸化,从而增加HIF1α稳定性。HIF1α,反过来,上调ALKBH5以减少LINC00115的m6A修饰,导致YTHDF2依赖性m6A修饰的RNA的降解减弱,并增强LINC00115的稳定性。因此,在三阴性乳腺癌中,这种正反馈循环激发了BCSC表型,并增强了化疗耐药和转移.SETDB1抑制剂TTD-IN与LINC00115ASO在异种移植动物模型中使PTX抗性细胞对化疗的反应敏感。LINC00115、甲基化PLK3、SETDB1和HIF1α的相关表达是临床三阴性乳腺癌的预后。
    结论:我们的发现揭示了LINC00115作为BCSC的关键调节因子,并强调了靶向LINC00115和SETDB1作为化疗耐药乳腺癌的潜在治疗策略。
    Cancer stem-like cell is a key barrier for therapeutic resistance and metastasis in various cancers, including breast cancer, yet the underlying mechanisms are still elusive. Through a genome-wide lncRNA expression profiling, we identified that LINC00115 is robustly upregulated in chemoresistant breast cancer stem-like cells (BCSCs).
    LncRNA microarray assay was performed to document abundance changes of lncRNAs in paclitaxel (PTX)-resistant MDA-MB-231 BCSC (ALDH+) and non-BCSC (ALDH-). RNA pull-down and RNA immunoprecipitation (RIP) assays were performed to determine the binding proteins of LINC00115. The clinical significance of the LINC00115 pathway was examined in TNBC metastatic lymph node tissues. The biological function of LINC00115 was investigated through gain- and loss-of-function studies. The molecular mechanism was explored through RNA sequencing, mass spectrometry, and the CRISPR/Cas9-knockout system. The therapeutic potential of LINC00115 was examined through xenograft animal models.
    LINC00115 functions as a scaffold lncRNA to link SETDB1 and PLK3, leading to enhanced SETDB1 methylation of PLK3 at both K106 and K200 in drug-resistant BCSC. PLK3 methylation decreases PLK3 phosphorylation of HIF1α and thereby increases HIF1α stability. HIF1α, in turn, upregulates ALKBH5 to reduce m6A modification of LINC00115, resulting in attenuated degradation of YTHDF2-dependent m6A-modified RNA and enhanced LINC00115 stability. Thus, this positive feedback loop provokes BCSC phenotypes and enhances chemoresistance and metastasis in triple-negative breast cancer. SETDB1 inhibitor TTD-IN with LINC00115 ASO sensitizes PTX-resistant cell response to chemotherapy in a xenograft animal model. Correlative expression of LINC00115, methylation PLK3, SETDB1, and HIF1α are prognostic for clinical triple-negative breast cancers.
    Our findings uncover LINC00115 as a critical regulator of BCSC and highlight targeting LINC00115 and SETDB1 as a potential therapeutic strategy for chemotherapeutic resistant breast cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    eEF2翻译后修饰(PTM)可深刻影响mRNA翻译动力学。然而,eEF2K525三甲基化(eEF2K525me3)的生理功能,由FAM86A酶催化的PTM,是未知的。这里,我们发现,eEF2的FAM86A甲基化调节新生伸长,促进蛋白质合成和肺腺癌(LUAD)的发病机制。FAM86A的主要生理底物是eEF2,对K525me3进行建模以促进易位过程中有效的eEF2核糖体接合。LUAD细胞中FAM86A的消耗导致80S单体积累和mRNA翻译抑制。FAM86A在LUAD中过表达,eEF2K525me3水平通过推进LUAD疾病阶段而增加。FAM86A敲低减弱LUAD细胞增殖,抑制FAM86A-eEF2K525me3轴在体内抑制癌细胞和患者来源的LUAD异种移植物生长。最后,FAM86A消融在KRASG12C驱动的LUAD小鼠模型中强烈减弱肿瘤生长并延长存活。因此,我们的工作揭示了一个eEF2甲基化介导的mRNA翻译延伸调节节点,并将FAM86A作为LUAD的病原体.
    eEF2 post-translational modifications (PTMs) can profoundly affect mRNA translation dynamics. However, the physiologic function of eEF2K525 trimethylation (eEF2K525me3), a PTM catalyzed by the enzyme FAM86A, is unknown. Here, we find that FAM86A methylation of eEF2 regulates nascent elongation to promote protein synthesis and lung adenocarcinoma (LUAD) pathogenesis. The principal physiologic substrate of FAM86A is eEF2, with K525me3 modeled to facilitate productive eEF2-ribosome engagement during translocation. FAM86A depletion in LUAD cells causes 80S monosome accumulation and mRNA translation inhibition. FAM86A is overexpressed in LUAD and eEF2K525me3 levels increase through advancing LUAD disease stages. FAM86A knockdown attenuates LUAD cell proliferation and suppression of the FAM86A-eEF2K525me3 axis inhibits cancer cell and patient-derived LUAD xenograft growth in vivo. Finally, FAM86A ablation strongly attenuates tumor growth and extends survival in KRASG12C-driven LUAD mouse models. Thus, our work uncovers an eEF2 methylation-mediated mRNA translation elongation regulatory node and nominates FAM86A as an etiologic agent in LUAD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    赖氨酸甲基化是发生在组蛋白和非组蛋白蛋白中的主要翻译后蛋白修饰。新兴研究表明,非组蛋白中的甲基化赖氨酸残基为泛素依赖性蛋白水解提供了蛋白水解信号。SET7(SETD7)甲基转移酶将甲基从S-腺苷甲硫氨酸特异性转移到位于蛋白质底物的甲基化基序中的特定赖氨酸残基,以标记甲基化蛋白质用于泛素依赖性蛋白水解。LSD1(Kdm1a)充当去甲基酶以动态地从修饰的蛋白质中去除甲基。甲基化的赖氨酸残基被L3MBTL3特异性识别,L3MBTL3是一种包含恶性脑肿瘤域的甲基赖氨酸读取器,通过CRL4DCAF5泛素连接酶复合物靶向甲基化蛋白进行蛋白水解。甲基化的赖氨酸残基也被PHF20L1识别以保护甲基化的蛋白质免于蛋白水解。赖氨酸甲基化介导的蛋白水解调节胚胎发育,维持胚胎干细胞和其他干细胞如神经干细胞和造血干细胞的多能性和自我更新,并控制其他生物过程。赖氨酸甲基化依赖性蛋白水解的失调与各种疾病有关,包括癌症。赖氨酸甲基化的表征应该揭示对发育和相关疾病如何调控的新见解。
    Lysine methylation is a major post-translational protein modification that occurs in both histones and non-histone proteins. Emerging studies show that the methylated lysine residues in non-histone proteins provide a proteolytic signal for ubiquitin-dependent proteolysis. The SET7 (SETD7) methyltransferase specifically transfers a methyl group from S-Adenosyl methionine to a specific lysine residue located in a methylation degron motif of a protein substrate to mark the methylated protein for ubiquitin-dependent proteolysis. LSD1 (Kdm1a) serves as a demethylase to dynamically remove the methyl group from the modified protein. The methylated lysine residue is specifically recognized by L3MBTL3, a methyl-lysine reader that contains the malignant brain tumor domain, to target the methylated proteins for proteolysis by the CRL4DCAF5 ubiquitin ligase complex. The methylated lysine residues are also recognized by PHF20L1 to protect the methylated proteins from proteolysis. The lysine methylation-mediated proteolysis regulates embryonic development, maintains pluripotency and self-renewal of embryonic stem cells and other stem cells such as neural stem cells and hematopoietic stem cells, and controls other biological processes. Dysregulation of the lysine methylation-dependent proteolysis is associated with various diseases, including cancers. Characterization of lysine methylation should reveal novel insights into how development and related diseases are regulated.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    免疫系统保护我们的身体免受细菌侵害,病毒,和毒素并去除恶性细胞。免疫细胞的激活需要重要信号蛋白网络的启动。这些蛋白质的甲基化影响其结构和生物学功能。在刺激下,T细胞,B细胞,和其他免疫细胞经历激活,发展,扩散,分化,以及细胞因子和抗体的制造。取决于甲基化的程度和类型,甲基转移酶改变上述过程并导致不同的结果。在过去的二十年里,据报道,甲基转移酶可介导多种免疫阶段。阐明甲基化在免疫中的作用不仅有助于理解免疫机制,而且有助于开发新的免疫治疗策略。因此,我们在此综述了免疫中甲基化的研究,旨在为新方法提供思路。
    The immune system protects our body from bacteria, viruses, and toxins and removes malignant cells. Activation of immune cells requires the onset of a network of important signaling proteins. Methylation of these proteins affects their structure and biological function. Under stimulation, T cells, B cells, and other immune cells undergo activation, development, proliferation, differentiation, and manufacture of cytokines and antibodies. Methyltransferases alter the above processes and lead to diverse outcomes depending on the degree and type of methylation. In the previous two decades, methyltransferases have been reported to mediate a great variety of immune stages. Elucidating the roles of methylation in immunity not only contributes to understanding the immune mechanism but is helpful in the development of new immunotherapeutic strategies. Hence, we review herein the studies on methylation in immunity, aiming to provide ideas for new approaches.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    SETD2(含有SET结构域的蛋白质2)是SET家族的组蛋白甲基转移酶(HMT),其负责组蛋白H3的K36的三甲基化,从而产生表观遗传标记H3K36me3。最近的研究表明,某些SET家族HMT,例如SMYD2、SMYD3或SETDB1也可以甲基化蛋白激酶,因此参与信号传导途径。在这里,我们提供了结构和酶证据,表明SETD2在体外甲基化蛋白酪氨酸激酶ACK1。ACK1被认为是来自各种受体酪氨酸激酶的信号传导的主要整合者。使用ACK1肽和重组蛋白,我们显示SETD2将ACK1的K514残基甲基化,产生K514单,di或三甲基化。有趣的是,K514存在于ACK1的“H3K36样”基序中,该基序已知经过翻译后修饰并参与蛋白质-蛋白质相互作用。与ACK1肽复合的SETD2催化结构域的晶体结构进一步为SETD2甲基化ACK1K514提供了结构基础。因此,我们的工作强烈表明ACK1可能是SETD2的新型非组蛋白底物,并进一步支持SETHMT,如SETD2,可能参与表观遗传调控和细胞信号传导。
    SETD2 (SET-domain containing protein 2) is a histone methyltransferase (HMT) of the SET family responsible for the trimethylation of K36 of histone H3, thus producing the epigenetic mark H3K36me3. Recent studies have shown that certain SET family HMTs, such as SMYD2, SMYD3 or SETDB1 can also methylate protein kinases and therefore be involved in signaling pathways. Here we provide structural and enzymatic evidence showing that SETD2 methylates the protein tyrosine kinase ACK1 in vitro. ACK1 is recognized as a major integrator of signaling from various receptor tyrosine kinases. Using ACK1 peptides and recombinant proteins, we show that SETD2 methylates the K514 residue of ACK1 generating K514 mono, di or tri-methylation. Interestingly, K514 is found in a \"H3K36-like\" motif of ACK1 which is known to be post-translationally modified and to be involved in protein-protein interaction. The crystal structure of SETD2 catalytic domain in complex with an ACK1 peptide further provides the structural basis for the methylation of ACK1 K514 by SETD2. Our work therefore strongly suggests that ACK1 could be a novel non-histone substrate of SETD2 and further supports that SET HMTs, such as SETD2, could be involved in both epigenetic regulations and cell signaling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Review
    赖氨酸甲基化信号通过组蛋白修饰在转录状态调节中的关键作用已得到充分研究。虽然组蛋白赖氨酸甲基化已被广泛研究,最近发现的赖氨酸甲基化在成千上万的非组蛋白蛋白,扩大了我们的认识,这种小的化学修饰的蛋白质功能的调节。在这次审查中,我们强调了组蛋白和非组蛋白赖氨酸甲基化信号在骨骼肌生物学中的意义,跨越发展,维护,再生,和疾病进展。此外,我们讨论了其在骨骼肌生物学中的作用以及在骨骼肌相关疾病治疗中的临床应用的潜在未来意义。
    Lysine methylation signaling is well studied for its key roles in the regulation of transcription states through modifications on histone proteins. While histone lysine methylation has been extensively studied, recent discoveries of lysine methylation on thousands of non-histone proteins has broadened our appreciation for this small chemical modification in the regulation of protein function. In this review, we highlight the significance of histone and non-histone lysine methylation signaling in skeletal muscle biology, spanning development, maintenance, regeneration, and disease progression. Furthermore, we discuss potential future implications for its roles in skeletal muscle biology as well as clinical applications for the treatment of skeletal muscle-related diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    已显示蛋白质赖氨酸甲基转移酶SETD6影响不同的细胞活性,并与多种发育和病理过程的调节密切相关。然而,调节SETD6mRNA表达的上游信号未知。生物信息学分析显示SETD6启动子具有转录因子E2F1的结合位点。使用各种实验方法,我们显示E2F1与SETD6启动子结合并调节SETD6mRNA表达。我们进一步观察到这种现象是SETD6依赖性的,建议SETD6和E2F1是相连的。我们接下来证明SETD6单甲基化E2F1在体外和细胞中特异性地在K117处。最后,我们发现K117处的E2F1甲基化正调节SETD6mRNA的表达水平。SETD6的耗竭或E2F1K117R突变体的过表达,不能被SETD6甲基化的,逆转了效果。一起来看,我们的数据为正反馈机制提供了证据,该机制以SETD6甲基化依赖性方式调节E2F1的SETD6表达,并强调了蛋白质赖氨酸甲基转移酶和赖氨酸甲基化信号在基因转录调节中的重要性.
    The protein lysine methyltransferase SET domain-containing protein 6 (SETD6) has been shown to influence different cellular activities and to be critically involved in the regulation of diverse developmental and pathological processes. However, the upstream signals that regulate the mRNA expression of SETD6 are not known. Bioinformatic analysis revealed that the SETD6 promoter has a binding site for the transcription factor E2F1. Using various experimental approaches, we show that E2F1 binds to the SETD6 promoter and regulates SETD6 mRNA expression. Our further observation that this phenomenon is SETD6 dependent suggested that SETD6 and E2F1 are linked. We next demonstrate that SETD6 monomethylates E2F1 specifically at K117 in vitro and in cells. Finally, we show that E2F1 methylation at K117 positively regulates the expression level of SETD6 mRNA. Depletion of SETD6 or overexpression of E2F1 K117R mutant, which cannot be methylated by SETD6, reverses the effect. Taken together, our data provide evidence for a positive feedback mechanism, which regulates the expression of SETD6 by E2F1 in a SETD6 methylation-dependent manner, and highlight the importance of protein lysine methyltransferases and lysine methylation signaling in the regulation of gene transcription.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    致癌KRAS突变是非小细胞肺癌(NSCLC)发生和进展的关键驱动因素。然而,KRAS的翻译后修饰(PTM),尤其是甲基化,修改KRAS活性仍不清楚。这里,我们显示,SET结构域含有组蛋白赖氨酸甲基转移酶7(SETD7)与KRAS相互作用,并在赖氨酸182和184处甲基化KRAS。SETD7介导的KRAS甲基化导致KRAS的降解和RAS/MEK/ERK信号级联的衰减,赋予SETD7在非小细胞肺癌中有效的肿瘤抑制作用,在体外和体内。机械上,RABGEF1,一种KRAS的泛素E3连接酶,被募集并以K182/K184甲基化依赖性方式促进KRAS降解。值得注意的是,在临床NSCLC组织中,SETD7在蛋白水平上与KRAS呈负相关。低SETD7或RABGEF1表达与肺腺癌患者的不良预后相关。总之,我们的结果定义了SETD7的肿瘤抑制功能,其通过调节KRAS甲基化和降解起作用.
    Oncogenic KRAS mutations are a key driver for initiation and progression in non-small cell lung cancer (NSCLC). However, how post-translational modifications (PTMs) of KRAS, especially methylation, modify KRAS activity remain largely unclear. Here, we show that SET domain containing histone lysine methyltransferase 7 (SETD7) interacts with KRAS and methylates KRAS at lysines 182 and 184. SETD7-mediated methylation of KRAS leads to degradation of KRAS and attenuation of the RAS/MEK/ERK signaling cascade, endowing SETD7 with a potent tumor-suppressive role in NSCLC, both in vitro and in vivo. Mechanistically, RABGEF1, a ubiquitin E3 ligase of KRAS, is recruited and promotes KRAS degradation in a K182/K184 methylation-dependent manner. Notably, SETD7 is inversely correlated with KRAS at the protein level in clinical NSCLC tissues. Low SETD7 or RABGEF1 expression is associated with poor prognosis in lung adenocarcinoma patients. Altogether, our results define a tumor-suppressive function of SETD7 that operates via modulating KRAS methylation and degradation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号