lower body positive pressure treadmill

  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    BACKGROUND: Lower body positive pressure (LBPP) treadmill has potential applications for improving the gait of patients after stroke, but the related mechanism remains unclear.
    METHODS: A 62-year-old male patient suffered from ischemic stroke with hemiplegic gait. He was referred to our hospital because of a complaint of left limb weakness for 2 years. The LBPP training was performed one session per day and six times per week for 2 wk. The dynamic plantar pressure analysis was taken every 2 d. Meanwhile, three-digital gait analysis and synchronous electromyography as well as clinical assessments were taken before and after LBPP intervention and at the 4-wk follow-up. During LBPP training, our patient not only improved his lower limb muscle strength and walking speed, but more importantly, the symmetry index of various biomechanical indicators improved. Moreover, the patient\'s planter pressure transferring from the heel area to toe area among the LBPP training process and the symmetry of lower body biomechanical parameters improved.
    CONCLUSIONS: In this study, we documented a dynamic improvement of gait performance in a stroke patient under LBPP training, which included lower limb muscle strength, walking speed, and symmetry of lower limb biomechanics. Our study provides some crucial clues about the potential dynamic mechanism for LBPP training on gait and balance improvement, which is related to rebuilding foot pressure distribution and remodeling symmetry of biomechanics of the lower limb.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    OBJECTIVE: We investigated the influence of a change in stride frequency on physiological and perceptual responses during forward and backward running at different body weight support (BWS) levels.
    METHODS: Participants ran forward and backward at 0% BWS, 20% BWS, and 50% BWS conditions on a lower body positive pressure treadmill. The stride frequency conditions consisted of forward and backward running at preferred stride frequency (PSF), PSF + 10%, and PSF-10%. We measured oxygen uptake ([Formula: see text]O2), carbon dioxide production, heart rate (HR), muscle activity from the lower extremity, and rating of perceived exertion (RPE). Furthermore, we calculated the metabolic cost of transport (CoT).
    RESULTS: [Formula: see text]O2, HR, CoT, and muscle activity from the rectus femoris were significantly different between stride frequency conditions (P < 0.05). [Formula: see text]O2, HR, and CoT during running at PSF + 10% were significantly higher than when running at PSF, regardless of running direction and BWS (P < 0.05). However, RPE was not different between stride frequency conditions (P > 0.05: e.g., 12.8-13.8 rankings in RPE for backward running at 0% BWS).
    CONCLUSIONS: Manipulation of stride frequency during running may have a greater impact on physiological responses than on perceptual responses at a given speed, regardless of running direction and BWS. Individuals who need to increase their physiological demands during running may benefit from a 10% increase in stride frequency from the PSF, regardless of BWS and running direction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    BACKGROUND: Running with body weight support (BWS) has been used for physical fitness enhancement. Nevertheless, gait mechanics of running with BWS is not fully understood.
    OBJECTIVE: We investigated influence of stride frequency manipulation on muscle activity during running at various BWS conditions.
    METHODS: Nineteen participants (23.8 ± 4.1 years) ran on a lower body positive pressure treadmill at their preferred speed and preferred stride frequency (PSF) for 0%BWS, 50%BWS, and 80%BWS conditions. Preferred speed and PSF were selected for each of the BWS conditions. The stride frequency conditions consisted of running at PSF, PSF+10%, and PSF-10%. Muscle activity from the rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and gastrocnemius (GA) were measured.
    RESULTS: RF and BF during running at the PSF+10% were higher than when running at the PSF, regardless of BWS (P < 0.01). Additionally, RF and TA during running at the PSF-10% were higher than when running at the PSF, regardless of BWS (P < 0.05). Furthermore, RF, TA, GA, and PSF during running decreased with increasing BWS (P < 0.05), although preferred speed increased with increasing BWS (P < 0.001).
    CONCLUSIONS: These observations suggest that manipulating stride frequency by 10% from the PSF during running produces greater RF, BF, and TA than when running at the PSF, regardless of BWS. Furthermore, it was suggested that a change in BWS influences RF, TA, GA, PSF, and preferred speed during running. Such information may be useful to enable the practitioner to refine the use of running with BWS in exercise programs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    这项研究旨在确定不同百分比的体重支持(BWS)对跑步过程中时空步骤特征的影响。26名耐力跑步者(年龄:37±9岁)完成了由6种不同条件组成的跑步机方案(BWS组合:0-50%),速度保持在12公里/小时。每个条件持续1分钟。步进角,接地时间(CT),飞行时间(FT),步长(SL)和频率(SF),在测试过程中,使用光电电池系统测量了每个步骤的站立时间和持续时间(阶段1:初始接触;阶段2:中期;阶段3:推进)。与基线条件(100%BW)相比,FT更长,CT较短,SL更长,SF较低,步距角随着BWS的增加而增大(p<0.05)。此外,在站立时间期间的阶段的持续时间中观察到一些变化:阶段1没有经历跨实验条件的变化(p=0.096),随着BW的支持,Phase2降低,Phase3升高(p<0.05)。这些结果表明,由于BW得到了支持,跑步者表现出更长的FT和SL,CT较短,较低的SF,和更大的步进角以及在地面接触期间相位的一些变化。因此,本研究强调了不同BWS百分比对时空参数的影响。
    This study aimed to determine the effect of different percentages of body weight support (BWS) on spatiotemporal step characteristics during running. 26 endurance runners (age: 37 ± 9 years) completed a running treadmill protocol consisting of 6 different conditions (BWS combinations: 0-50%), with velocity maintained at 12 km/h. Each condition lasted 1 minute. Step angle, ground contact time (CT), flight time (FT), step length (SL) and frequency (SF), and duration of phases during stance time (phase1: initial contact; phase2: midstance; phase3: propulsion) were measured for every step during the test using a photoelectric cell system. Compared with the baseline condition (100% BW), FT was longer, CT was shorter, SL was longer, SF was lower, and the step angle was higher with each increase in BWS (p < 0.05). Also, some changes were observed in the duration of phases during stance time: phase1 did not experience changes across experimental conditions (p = 0.096), phase2 decreased and phase3 increased as BW was supported (p < 0.05). These results indicate that as BW was supported, runners showed longer FT and SL, shorter CT, lower SF, and greater step angle as well as some changes in the phases during the ground contact. Therefore, this study highlights the effect of different percentages of BWS on spatiotemporal parameters.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    We investigated muscle activity during backward (BR) and forward (FR) running with body weight support (BWS). Ten participants completed BR and FR on a lower body positive pressure treadmill while selecting a preferred speed (PS) for different BWS conditions (0%, 20%, 40%, 60%, and 80%BWS). Muscle activity from the rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and gastrocnemius (GA), rating of perceived exertion (RPE), preferred stride frequency (PSF), and PS were measured. Magnitude of muscle activity (BF, TA, and GA), RPE, PSF, and PS were not influenced by the interaction of direction and BWS (P>0.05). BF, TA, and GA were not different between directions (P>0.05) but were different between BWS conditions (P<0.01). RF was influenced by the interaction of direction and BWS (P<0.01). RF, BF, TA, and GA during BR were lower with increasing BWS. RF during BR was 59-86% higher than that of FR within BWS condition. RPE was lower with increasing BWS (P<0.001), regardless of direction of locomotion. PSF was lower and PS was higher during BR and FR with increasing BWS (both P<0.001). PSF during BR was 6-9% higher than that of FR. PS during BR was 24-31% lower than that of FR. These observations demonstrate that a change in BWS influences magnitude of muscle activity, PS, PSF, and RPE for both BR and FR. However, a change in direction of locomotion may not influence magnitude of muscle activity or RPE during running for a given BWS, even though muscle activity pattern, PS, and PSF were different between BR and FR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号