loop extrusion

环圈挤出
  • 文章类型: Journal Article
    环形凝聚蛋白复合物在拓扑上捕获两个DNA分子以建立姐妹染色单体内聚力。Cohesin还塑造了相间染色质景观,对基因调控具有广泛的意义,和粘附蛋白被认为是通过主动挤出DNA环而不拓扑截留DNA来实现这一目标。“环挤出”假设从体外观察中找到了动机-该过程是否是体内染色质环形成的基础仍未测试。这里,使用酿酒酵母,我们产生的粘附素变体失去了挤出DNA环的能力,但保留了拓扑捕获DNA的能力。对这些变体的分析表明,体内染色质环的形成与环挤出无关。相反,我们发现转录促进了环的形成,并充当外部马达,扩展这些回路并定义其最终位置。我们的结果需要重新评估回路挤出假设。我们建议cohesin,类似于姐妹染色单体在复制叉上的内聚力建立,通过DNA-DNA捕获在转录位置形成染色质环,从而统一了cohesin在染色体分离和间期基因组组织中的两种作用。
    The ring-shaped cohesin complex topologically entraps two DNA molecules to establish sister chromatid cohesion. Cohesin also shapes the interphase chromatin landscape with wide-ranging implications for gene regulation, and cohesin is thought to achieve this by actively extruding DNA loops without topologically entrapping DNA. The \'loop extrusion\' hypothesis finds motivation from in vitro observations-whether this process underlies in vivo chromatin loop formation remains untested. Here, using the budding yeast S. cerevisiae, we generate cohesin variants that have lost their ability to extrude DNA loops but retain their ability to topologically entrap DNA. Analysis of these variants suggests that in vivo chromatin loops form independently of loop extrusion. Instead, we find that transcription promotes loop formation, and acts as an extrinsic motor that expands these loops and defines their ultimate positions. Our results necessitate a re-evaluation of the loop extrusion hypothesis. We propose that cohesin, akin to sister chromatid cohesion establishment at replication forks, forms chromatin loops by DNA-DNA capture at places of transcription, thus unifying cohesin\'s two roles in chromosome segregation and interphase genome organisation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    TAD边界是通过阻断通过Cohesin介导的环挤压形成的DNA环来分离相邻结构域中的生物过程的基因组元件。大多数TAD边界由CTCF蛋白的结合位点阵列组成,其与Cohesin复杂块的相互作用循环挤出。但是TAD边界不是完全不可渗透的,并且允许有限量的TAD间环形成。基于对Nano-C数据的再分析,多接触染色体构象捕获试验,我们提出了一个模型,其中成簇的CTCF结合位点促进了Cohesin的连续停滞以及随后与染色质的解离。尽管如此,一小部分Cohesin实现了边界通读。由于基因组中其他地方的Cohesin解离速率恒定,但是,TAD间循环的最大长度受到限制。我们推测,停滞位点的DNA编码组织调节TAD边界通透性,并讨论了增强子-启动子环形成和其他基因组过程的含义。
    TAD boundaries are genomic elements that separate biological processes in neighboring domains by blocking DNA loops that are formed through Cohesin-mediated loop extrusion. Most TAD boundaries consist of arrays of binding sites for the CTCF protein, whose interaction with the Cohesin complex blocks loop extrusion. TAD boundaries are not fully impermeable though and allow a limited amount of inter-TAD loop formation. Based on the reanalysis of Nano-C data, a multicontact Chromosome Conformation Capture assay, we propose a model whereby clustered CTCF binding sites promote the successive stalling of Cohesin and subsequent dissociation from the chromatin. A fraction of Cohesin nonetheless achieves boundary read-through. Due to a constant rate of Cohesin dissociation elsewhere in the genome, the maximum length of inter-TAD loops is restricted though. We speculate that the DNA-encoded organization of stalling sites regulates TAD boundary permeability and discuss implications for enhancer-promoter loop formation and other genomic processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在凝缩蛋白复合物对DNA的不对称环挤出过程中,复合物的一个结构域稳定地锚定在DNA分子上,另一个结构域在DNA链上变成一个环。环中的DNA链完全松弛,或者循环中没有张力。就在循环之外,有一种张力抵抗DNA的挤压。为了保持DNA环的挤压,凝聚素复合物必须具有能够产生力以克服环外张力的域。这项研究提出,槽形HEAT重复结构域Ycg1起着分子马达的作用。DNA分子可以静电结合到凹槽上,弱的结合力促进了DNA分子的随机热运动。DNA与凹槽的非平行内表面之间的随机碰撞的力学模型可能会产生定向力,该力是环挤压维持所需的。铰链结构域与DNA分子结合并在不对称DNA环挤出期间充当锚。当考虑到ATP水解和流体环境的粘性阻力的影响时,凝集素复合体的电机-锚模型和力学模型可以解释不对称回路挤压,步骤的形成,环挤出中的步长分布,依赖于张力的挤出速度,DNA链上共存环之间的相互作用,并在挤压过程中解开结。该模型还可以解释所观察到的Z环的形成。
    During the asymmetric loop extrusion of DNA by a condensin complex, one domain of the complex stably anchors to the DNA molecule, and another domain reels in the DNA strand into a loop. The DNA strand in the loop is fully relaxed, or there is no tension in the loop. Just outside of the loop, there is a tension that resists the extrusion of DNA. To maintain the extrusion of the DNA loop, the condensin complex must have a domain capable of generating a force to overcome the tension outside of the loop. This study proposes that the groove-shaped HEAT repeat domain Ycg1 plays the role of a molecular motor. A DNA molecule may bind to the groove electrostatically, and the weak binding force facilitates the random thermal motion of DNA molecules. A mechanical model that random collisions between DNA and the nonparallel inner surfaces of the groove may generate a directional force which is required for the loop extrusion to sustain. The hinge domain binds to the DNA molecule and acts as an anchor during asymmetric DNA loop extrusion. When the effects of ATP hydrolysis and the viscous drag of the fluid environment are considered, the motor-anchor model for the condensin complex and the mechanical model might explain the asymmetric loop extrusion, the formation of steps, the step size distribution in the loop extrusion, the tension-dependent extrusion speed, the interaction between coexisting loops on the DNA strand, and untying the knots during extrusion. This model can also explain the observed formation of the Z-loop.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA环挤压在基因表达和染色质结构排列的调控中起关键作用。大多数现有的循环挤压机械模型依赖于某种类型的棘轮机构,这应该允许延长环,同时防止它们崩溃,通过使DNA只能向一个方向移动。已知STAG2作为DNA锚发挥作用,但是现有的结构数据表明在单向DNA运动中可能起作用。在这项工作中,我们构建了一个计算模拟框架来评估STAG2是否可以强制DNA双螺旋的这种单向移位.结果表明,STAG2V形允许DNA向一个方向滑动,但是通过线性棘轮机制阻止相反的DNA运动。此外,这些结果表明,与STAG2结合的RAD21通过缩小其V形的开口来控制其灵活性,否则在没有RAD21的情况下仍然广泛开放。因此,在提出的模型中,除了其已经描述的作为DNA锚的作用外,STAG2-RAD21复合物将是棘轮机制的一部分,该机制能够在环挤出过程中对DNA滑动施加定向选择性。环挤压的棘轮机制的分子基础的鉴定是揭开新的见解,以广泛的染色质活性及其对染色质相关疾病机制的影响的关键步骤。
    DNA loop extrusion plays a key role in the regulation of gene expression and the structural arrangement of chromatin. Most existing mechanistic models of loop extrusion depend on some type of ratchet mechanism, which should permit the elongation of loops while preventing their collapse, by enabling DNA to move in only one direction. STAG2 is already known to exert a role as DNA anchor, but the available structural data suggest a possible role in unidirectional DNA motion. In this work, a computational simulation framework was constructed to evaluate whether STAG2 could enforce such unidirectional displacement of a DNA double helix. The results reveal that STAG2 V-shape allows DNA sliding in one direction, but blocks opposite DNA movement via a linear ratchet mechanism. Furthermore, these results suggest that RAD21 binding to STAG2 controls its flexibility by narrowing the opening of its V-shape, which otherwise remains widely open in absence of RAD21. Therefore, in the proposed model, in addition to its already described role as a DNA anchor, the STAG2-RAD21 complex would be part of a ratchet mechanism capable of exerting directional selectivity on DNA sliding during loop extrusion. The identification of the molecular basis of the ratchet mechanism of loop extrusion is a critical step in unraveling new insights into a broad spectrum of chromatin activities and their implications for the mechanisms of chromatin-related diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多亚基SMC复合物的最突出代表,凝聚素和凝集素,最著名的是有丝分裂染色体的结构成分。事实证明,这些复合物,以及它们的细菌同源物,是分子马达,这些复合物沿DNA线的ATP依赖性运动导致DNA环的形成。近年来,我们目睹了SMC依赖的DNA循环过程中雪崩般的数据积累,也称为环挤出。这篇综述简要总结了当前对粘附素依赖性挤压在细胞生理学中的位置和作用的理解,并提出了许多模型,以最引人注目的方式描述了挤压的潜在分子机制。我们以讨论粘附蛋白挤出DNA环的能力如何在机械上与其参与姐妹染色单体内聚的关系来结束评论。
    The most prominent representatives of multisubunit SMC complexes, cohesin and condensin, are best known as structural components of mitotic chromosomes. It turned out that these complexes, as well as their bacterial homologues, are molecular motors, the ATP-dependent movement of these complexes along DNA threads leads to the formation of DNA loops. In recent years, we have witnessed an avalanche-like accumulation of data on the process of SMC dependent DNA looping, also known as loop extrusion. This review briefly summarizes the current understanding of the place and role of cohesin-dependent extrusion in cell physiology and presents a number of models describing the potential molecular mechanism of extrusion in a most compelling way. We conclude the review with a discussion of how the capacity of cohesin to extrude DNA loops may be mechanistically linked to its involvement in sister chromatid cohesion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    长线性基因组DNA分子的精确复制和分离与许多纯机械问题有关。SMC复合物是细胞机制的关键组成部分,可确保在分裂过程中姐妹染色体的缺失和基因组DNA的压缩。Cohesin,一种重要的真核SMC复合物,具有典型的环结构,具有亚基间孔,DNA分子可以穿过该孔。粘附素进行这种DNA拓扑捕获的能力对于姐妹染色单体的复制后缔合现象至关重要,这通常被称为内聚。最近,很明显,cohesin和其他SMC复合物是,事实上,具有非常特殊的运动模式的马达蛋白,导致DNA环的形成。这个特定的过程被称为环挤出。挤压是凝聚的多种功能的基础,但是这个过程的分子机制仍然是个谜。在这次审查中,我们总结了粘附蛋白的分子结构数据,ATP水解循环对这种结构的影响,和已知的粘附蛋白-DNA相互作用模式。在不远的将来,这里提出的许多看似完全不同的事实可能会被纳入一个统一的循环挤压机械模型中。
    Accurate duplication and separation of long linear genomic DNA molecules is associated with a number of purely mechanical problems. SMC complexes are key components of the cellular machinery that ensures decatenation of sister chromosomes and compaction of genomic DNA during division. Cohesin, one of the essential eukaryotic SMC complexes, has a typical ring structure with intersubunit pore through which DNA molecules can be threaded. Capacity of cohesin for such topological entrapment of DNA is crucial for the phenomenon of post-replicative association of sister chromatids better known as cohesion. Recently, it became apparent that cohesin and other SMC complexes are, in fact, motor proteins with a very peculiar movement pattern leading to formation of DNA loops. This specific process has been called loop extrusion. Extrusion underlies multiple functions of cohesin beyond cohesion, but molecular mechanism of the process remains a mystery. In this review, we summarized the data on molecular architecture of cohesin, effect of ATP hydrolysis cycle on this architecture, and known modes of cohesin-DNA interactions. Many of the seemingly disparate facts presented here will probably be incorporated in a unified mechanistic model of loop extrusion in the not-so-distant future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在哺乳动物细胞中,粘附蛋白复合物被认为在间期沿染色质易位,通过称为活性环挤出的过程形成动态环。染色体构象捕获和成像实验表明,染色质采用紧密结构,染色体之间和染色体切片之间的相互渗透有限。我们开发了一种理论,证明主动环挤出会导致染色质的表观分形维数在30千碱基对的轮廓长度上在2到4之间交叉。异常高的分形维数[公式:见正文]是由于挤出环在主动挤出过程中无法完全松弛。较长等高线长度尺度上的压实在拓扑关联域(TAD)内延伸,促进远端元件的基因调控。挤出诱导的压实会隔离TAD,使TAD之间的重叠减少到35%以下,并使染色质的缠结链增加多达50倍至几个兆碱基对。此外,主动环挤压将粘附素运动与先前挤压粘附素形成的染色质构象相耦合,并导致染色质基因座在滞后时间([公式:见正文])超过数十分钟的均方位移与[公式:见正文]成正比。我们通过混合分子动力学-蒙特卡罗模拟验证了我们的结果,并表明我们的理论与实验数据一致。这项工作为相间染色质的紧密组织提供了理论依据,解释TAD分离和染色质缠结抑制的物理原因,这有助于有效的基因调控。
    In mammalian cells, the cohesin protein complex is believed to translocate along chromatin during interphase to form dynamic loops through a process called active loop extrusion. Chromosome conformation capture and imaging experiments have suggested that chromatin adopts a compact structure with limited interpenetration between chromosomes and between chromosomal sections. We developed a theory demonstrating that active loop extrusion causes the apparent fractal dimension of chromatin to cross-over between two and four at contour lengths on the order of 30 kilo-base pairs. The anomalously high fractal dimension [Formula: see text] is due to the inability of extruded loops to fully relax during active extrusion. Compaction on longer contour length scales extends within topologically associated domains (TADs), facilitating gene regulation by distal elements. Extrusion-induced compaction segregates TADs such that overlaps between TADs are reduced to less than 35% and increases the entanglement strand of chromatin by up to a factor of 50 to several Mega-base pairs. Furthermore, active loop extrusion couples cohesin motion to chromatin conformations formed by previously extruding cohesins and causes the mean square displacement of chromatin loci during lag times ([Formula: see text]) longer than tens of minutes to be proportional to [Formula: see text]. We validate our results with hybrid molecular dynamics-Monte Carlo simulations and show that our theory is consistent with experimental data. This work provides a theoretical basis for the compact organization of interphase chromatin, explaining the physical reason for TAD segregation and suppression of chromatin entanglements which contribute to efficient gene regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    类别转换重组(CSR)使抗体的效应子功能多样化,并涉及转录和DNA损伤修复的复杂调节。这里,我们表明,去泛素酶USP7促进CSR免疫球蛋白A(IgA),并抑制成熟B细胞中计划外的IgG转换,而不依赖于其在DNA损伤修复中的作用,而是通过调节开关区种系转录。USP7耗竭损害Sα转录,导致Sγ种系转录的异常激活,并通过环挤出增加与CSR中心的相互作用,以进行计划外的IgG转换。在USP7缺失的细胞中通过转化生长因子β(TGF-β)挽救Sα转录抑制了Sγ种系转录,并防止了向IgGCSR的环挤压。机械上,USP7保护转录因子RUNX3免受泛素化介导的降解以促进Sα种系转录。我们的研究提供了主动转录作为阻止环挤压的锚的证据,并揭示了USP7和TGF-β信号传导在促进有效IgACSR的RUNX3表达中的功能相互作用。
    Class switch recombination (CSR) diversifies the effector functions of antibodies and involves complex regulation of transcription and DNA damage repair. Here, we show that the deubiquitinase USP7 promotes CSR to immunoglobulin A (IgA) and suppresses unscheduled IgG switching in mature B cells independent of its role in DNA damage repair, but through modulating switch region germline transcription. USP7 depletion impairs Sα transcription, leading to abnormal activation of Sγ germline transcription and increased interaction with the CSR center via loop extrusion for unscheduled IgG switching. Rescue of Sα transcription by transforming growth factor β (TGF-β) in USP7-deleted cells suppresses Sγ germline transcription and prevents loop extrusion toward IgG CSR. Mechanistically, USP7 protects transcription factor RUNX3 from ubiquitination-mediated degradation to promote Sα germline transcription. Our study provides evidence for active transcription serving as an anchor to impede loop extrusion and reveals a functional interplay between USP7 and TGF-β signaling in promoting RUNX3 expression for efficient IgA CSR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细菌染色体组织与转录和复制等功能之间的相互作用可以使用新的实验技术进行更详细的研究。解释由此产生的定量数据,然而,理论上是有挑战性的。在这篇小型评论中,我们讨论了如何将实验观察与生物物理理论和建模联系起来,可以对细菌染色体组织产生新的见解。我们考虑增加复杂性的三种模式:简单的聚合物模型,探索物理约束,如禁闭或plectoneme分支,可以影响细菌染色体组织;自下而上的机械模型将这些约束与其根本原因联系起来,例如,染色体压缩到大分子拥挤,或超卷转录;最后,直接从复杂的实验数据中推断可解释和定量模型的数据驱动方法。使用最近的例子,我们讨论了生物物理模型如何加深我们对细菌染色体结构的理解,并对细菌染色体结构产生新的预测。
    The interplay between bacterial chromosome organization and functions such as transcription and replication can be studied in increasing detail using novel experimental techniques. Interpreting the resulting quantitative data, however, can be theoretically challenging. In this minireview, we discuss how connecting experimental observations to biophysical theory and modeling can give rise to new insights on bacterial chromosome organization. We consider three flavors of models of increasing complexity: simple polymer models that explore how physical constraints, such as confinement or plectoneme branching, can affect bacterial chromosome organization; bottom-up mechanistic models that connect these constraints to their underlying causes, for instance, chromosome compaction to macromolecular crowding, or supercoiling to transcription; and finally, data-driven methods for inferring interpretable and quantitative models directly from complex experimental data. Using recent examples, we discuss how biophysical models can both deepen our understanding of how bacterial chromosomes are structured and give rise to novel predictions about bacterial chromosome organization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    真核基因组折叠成DNA环介导的结构维持染色体(SMC)复合物,如粘附蛋白,凝集素,Smc5/6这种组织在细胞周期中调节不同的DNA相关过程,比如转录,重组,隔离,DNA修复在G2阶段,SMC介导的DNA环与参与姐妹染色单体内聚(SCC)的粘附蛋白复合物共存。然而,SCC的建立和SMC介导的DNA环沿着染色质的形成之间的联系仍然未知。这里,我们表明SCC确实是粘附素介导的沿着G2/M酿酒酵母染色体的DNA环扩展的障碍。
    Eukaryotic genomes are folded into DNA loops mediated by structural maintenance of chromosomes (SMC) complexes such as cohesin, condensin, and Smc5/6. This organization regulates different DNA-related processes along the cell cycle, such as transcription, recombination, segregation, and DNA repair. During the G2 stage, SMC-mediated DNA loops coexist with cohesin complexes involved in sister chromatid cohesion (SCC). However, the articulation between the establishment of SCC and the formation of SMC-mediated DNA loops along the chromatin remains unknown. Here, we show that SCC is indeed a barrier to cohesin-mediated DNA loop expansion along G2/M Saccharomyces cerevisiae chromosomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号