lithium-ion storage

锂离子存储
  • 文章类型: Journal Article
    具有优越的理论容量(2596mAhg-1)和高电导率的黑磷被认为是锂离子电池(LIB)负极材料的强大候选材料之一,而严重的体积膨胀和缓慢的动力学仍然阻碍了其在LIB中的应用。相比之下,剥离的二维磷烯具有可忽略的体积变化,并且其固有的压电性被认为有利于锂离子转移动力学,虽然它的积极影响尚未讨论。在这里,提出了一种磷烯/MXene异质结构纹理化的纳米压电复合材料,具有均匀的磷烯分布和增强的压电-电化学耦合,作为一种适用的独立式不对称膜电极,超越了趋肤效应,用于增强锂离子存储。实验和模拟分析表明,嵌入的磷烯纳米片不仅为锂离子提供了丰富的活性位点,而且还赋予了纳米复合材料良好的压电性,从而通过产生用作额外加速器的压电场来促进锂离子转移动力学。通过MXene框架的华尔兹,优化的电极表现出增强的动力学和稳定性,在2Ag-1下实现1,000次循环的稳定循环性能,并在-20℃下提供524mAhg-1的高可逆容量,表明自组装纳米压电复合材料的结构优点对促进稳定性和动力学的积极影响。
    Black phosphorus with a superior theoretical capacity (2596 mAh g-1) and high conductivity is regarded as one of the powerful candidates for lithium-ion battery (LIB) anode materials, whereas the severe volume expansion and sluggish kinetics still impede its applications in LIBs. By contrast, the exfoliated two-dimensional phosphorene owns negligible volume variation, and its intrinsic piezoelectricity is considered to be beneficial to the Li-ion transfer kinetics, while its positive influence has not been discussed yet. Herein, a phosphorene/MXene heterostructure-textured nanopiezocomposite is proposed with even phosphorene distribution and enhanced piezo-electrochemical coupling as an applicable free-standing asymmetric membrane electrode beyond the skin effect for enhanced Li-ion storage. The experimental and simulation analysis reveals that the embedded phosphorene nanosheets not only provide abundant active sites for Li-ions, but also endow the nanocomposite with favorable piezoelectricity, thus promoting the Li-ion transfer kinetics by generating the piezoelectric field serving as an extra accelerator. By waltzing with the MXene framework, the optimized electrode exhibits enhanced kinetics and stability, achieving stable cycling performances for 1,000 cycles at 2 A g-1, and delivering a high reversible capacity of 524 mAh g-1 at - 20 ℃, indicating the positive influence of the structural merits of self-assembled nanopiezocomposites on promoting stability and kinetics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    二硫化钨(WS2)被认为是高性能锂离子电池(LIBs)的一种有前途的阳极材料,大的层间间距和弱的层间范德华力。然而,WS2具有容易团聚的缺点,严重的体积膨胀和高Li+迁移障碍,这导致容量快速退化和速率能力不完善。在这项工作中,制备了由在碳化钛(Ti3C2)纳米片上垂直生长的WS2纳米片组成的新型二维(2D)分层复合材料(Ti3C2/WS2)。由于WS2和Ti3C2之间的这种独特的分层结构和协同作用,Ti3C2/WS2复合材料在LIB中表现出优异的电化学性能。此外,研究了Ti3C2/WS2复合材料中WS2的质量比例对其电化学性能的影响,发现WS2的最佳质量比为60%。不出所料,最佳电极具有高比容量(100次循环后0.1A/g时为650mAh/g)和超长循环稳定性(5000次循环后1.0A/g时为400mAh/g)。
    Tungsten disulfide (WS2) is considered as a promising anode material for high-performance lithium-ion batteries (LIBs) result from its inherent characteristics such as high theoretical capacity, large interlayer spacing and weak interlayer Van der Waals force. Nevertheless, WS2 has the drawbacks of easy agglomeration, severe volume expansion and high Li+ migration barrier, which lead to rapid capacity degradation and imperfect rate ability. In this work, a novel two-dimensional (2D) hierarchical composite (Ti3C2/WS2) consisting of WS2 nanosheets vertically grown on titanium carbide (Ti3C2) nanosheets is prepared. Thanks to this distinctive hierarchical structure and synergy between WS2 and Ti3C2, the Ti3C2/WS2 composite demonstrates exceptional electrochemical performance in LIBs. In addition, we investigate the effect of the mass proportion of WS2 in Ti3C2/WS2 composite on the electrochemical performance, and find that the optimal mass ratio of WS2 is 60%. As expected, the optimal electrode exhibits a high specific capacity (650 mAh/g at 0.1 A/g after 100 cycles) and ultra-long cycle stability (400 mAh/g at 1.0 A/g after 5000 cycles).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    异质界面的合理设计可以精确调整电子结构,优化储能材料中电子/离子迁移的动力学。在这项工作中,通过精心设计的异质结构将内置电场引入铁基阳极材料(Fe2O3@TiO2)。该模型是理解先进锂离子电池(LIB)中电子转移的原子级优化的理想平台。因此,核壳Fe2O3@TiO2在300次循环后,在0.1Ag-1时具有1342mAhg-1的显着放电容量和82.7%的非凡容量保留率。Fe2O3@TiO2显示出0.1Ag-1至4.0Ag-1的优异速率性能。Further,经过2000次循环,Fe2O3@TiO2在1.0Ag-1时的放电容量达到736mAhg-1,相应的容量保留率为83.62%。异质结构形成常规的p-n结,成功构建了内置电场和锂离子储层。动力学分析表明,Fe2O3@TiO2表现出高的拟电容行为(77.8%)和快速的锂离子反应动力学。异质界面工程优化电化学反应动力学的能力为构建LIB的高性能铁基阳极提供了新的见解。
    The rational design of the heterogeneous interfaces enables precise adjustment of the electronic structure and optimization of the kinetics for electron/ion migration in energy storage materials. In this work, the built-in electric field is introduced to the iron-based anode material (Fe2O3@TiO2) through the well-designed heterostructure. This model serves as an ideal platform for comprehending the atomic-level optimization of electron transfer in advanced lithium-ion batteries (LIBs). As a result, the core-shell Fe2O3@TiO2 delivers a remarkable discharge capacity of 1342 mAh g-1 and an extraordinary capacity retention of 82.7% at 0.1 A g-1 after 300 cycles. Fe2O3@TiO2 shows an excellent rate performance from 0.1 A g-1 to 4.0 A g-1. Further, the discharge capacity of Fe2O3@TiO2 reached 736 mAh g-1 at 1.0 A g-1 after 2000 cycles, and the corresponding capacity retention is 83.62%. The heterostructure forms a conventional p-n junction, successfully constructing the built-in electric field and lithium-ion reservoir. The kinetic analysis demonstrates that Fe2O3@TiO2 displays high pseudocapacitance behavior (77.8%) and fast lithium-ion reaction kinetics. The capability of heterointerface engineering to optimize electrochemical reaction kinetics offers novel insights for constructing high-performance iron-based anodes for LIBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肖特基异质结构在激发材料界面处的电荷转移动力学方面具有显著优势。在这项工作中,使用原位结构策略构建了具有大活性表面积的内源性Nb2CTx/Nb2O5肖特基异质结构。半导体Nb2O5具有低功函数,在Nb2CTx/Nb2O5肖特基异质结构的构建过程中,有一个界面电子转移,这导致了一个内置的电场。由于电场驱动的电荷快速转移,Nb2CTx/Nb2O5肖特基异质结构的电化学反应动力学得到增强。Nb2CTx/Nb2O5肖特基异质结构具有较大的有源表面积,这有助于优异的电解质扩散动力学。因此,Nb2CTx/Nb2O5肖特基异质结构具有优异的锂离子存储容量,在0.10A/g下循环200次后,具有575mAh/g,在2.00A/g的条件下,1000次循环后为290mAh/g,没有容量衰减。此外,原位X射线衍射和非原位X射线光电子能谱分析揭示了电化学反应过程中Nb2CTx/Nb2O5肖特基异质结构的结构演化和锂离子存储优化的机制。具有激发电荷传输动力学的肖特基异质结构的构造为优化MXenes材料的锂离子存储活性提供了新的思路。
    Schottky heterostructures have significant advantages for exciting charge transfer kinetics at material interfaces. In this work, endogenous Nb2CTx/Nb2O5 Schottky heterostructures with a large active surface area were constructed using an in-situ architectural strategy. The semiconductor Nb2O5 has a low work function, and during the construction of Nb2CTx/Nb2O5 Schottky heterostructures, there was an interfacial electron transfer, which resulted in a built-in electric field. The electrochemical reaction kinetics of Nb2CTx/Nb2O5 Schottky heterostructures were enhanced due to the rapid transfer of charge driven by the electric field. The Nb2CTx/Nb2O5 Schottky heterostructures have a large active surface area, which contributes to excellent electrolyte diffusion kinetics. Therefore, Nb2CTx/Nb2O5 Schottky heterostructures have excellent lithium-ion storage capacity with 575 mAh/g after 200 cycles at 0.10 A/g, and 290 mAh/g after 1000 cycles at 2.00 A/g, without capacity fading. Furthermore, in-situ X-ray diffraction and ex-situ X-ray photoelectron spectroscopy analyses reveal the mechanisms for structure evolution and lithium-ion storage optimization of Nb2CTx/Nb2O5 Schottky heterostructures during the electrochemical reaction. The construction of Schottky heterostructures with excited charge transport kinetics provides a novel idea for optimizing the lithium-ion storage activity of MXenes materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    二维(2D)硅烯-锗烯合金,西利金(SixGey),单相材料,由于其两种元素的低屈曲成分以及独特的物理和化学,引起了越来越多的关注。这种2D材料有可能解决由低电导率和相应单层的环境不稳定性引起的挑战。然而,从理论上研究了siligene结构,展示了该材料在储能应用中的巨大电化学潜力。独立siligene的合成仍然具有挑战性,因此阻碍了其研究及其应用。在此,我们证明了Ca1.0Si1.0Ge1.0Zintl相前体对几层siligene的非水电化学剥离。该过程在施加-3.8V电势的无氧环境中进行。获得的siligene表现出高质量,高均匀性,和优异的结晶度;单个薄片在微米横向尺寸内。进一步探索了2DSixGey作为锂离子存储的阳极材料。已经制造了两种类型的阳极并将其集成到锂离子电池中,即,(1)西利金-氧化石墨烯海绵和(2)西利金-多壁碳纳米管。具有/不具有siligene的制成的电池均表现出相似的行为;但是,SiGe集成电池的电化学特性提高了10%。相应的电池在0.1A·g-1时表现出1145.0mAh·g-1的比容量。SiGe集成电池显示出非常低的极化,通过在50个工作循环之后它们的良好稳定性和在第一次放电/充电循环之后发生的固体电解质相间水平的降低来证实。我们预计新兴的双组分2D材料的潜力不断增长,以及它们在储能和其他方面的巨大前景。
    A two-dimensional (2D) silicene-germanene alloy, siligene (SixGey), a single-phase material, has attracted increased attention due to its two-elemental low-buckled composition and unique physics and chemistry. This 2D material has the potential to address the challenges caused by low electrical conductivity and the environmental instability of corresponding monolayers. Yet, the siligene structure was studied in theory, demonstrating the material\'s great electrochemical potential for energy storage applications. The synthesis of free-standing siligene remains challenging and therefore hinders the research and its application. Herein we demonstrate nonaqueous electrochemical exfoliation of a few-layer siligene from a Ca1.0Si1.0Ge1.0 Zintl phase precursor. The procedure was conducted in an oxygen-free environment applying a -3.8 V potential. The obtained siligene exhibits a high quality, high uniformity, and excellent crystallinity; the individual flake is within the micrometer lateral size. The 2D SixGey was further explored as an anode material for lithium-ion storage. Two types of anode have been fabricated and integrated into lithium-ion battery cells, namely, (1) siligene-graphene oxide sponges and (2) siligene-multiwalled carbon nanotubes. The as-fabricated batteries both with/without siligene exhibit similar behavior; however there is an increase in the electrochemical characteristics of SiGe-integrated batteries by 10%. The corresponding batteries exhibit a 1145.0 mAh·g-1 specific capacity at 0.1 A·g-1. The SiGe-integrated batteries demonstrate a very low polarization, confirmed by their good stability after 50 working cycles and a decrease in the solid electrolyte interphase level that occurs after the first discharge/charge cycle. We anticipate the growing potential of emerging two-component 2D materials and their great promise for energy storage and beyond.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    作为电化学的圣杯,同时具有高功率和高能量的电化学储能系统(EES)一直是人们追求的梦想。要同时实现“双高”EES,具有电池型和电容器型存储特性的存储材料的结构和组成的合理设计至关重要。在这里,设计了氟氮共注入碳管(FNCT),其中,得益于杂原子工程和氟氮协同作用,创造了丰富的活性位点和扩大的层间空间,因此,上述两种类型的存储机制可以在FNCT中获得最佳平衡。注入的氟杂原子不仅可以放大层间间距,而且还诱导氮构型从吡咯氮向吡啶氮的转化,进一步促进碳基质的活性。FNCT的非凡电化学性能,在107.5kWkg-1的超高功率密度下,具有119.4Whkg-1的高能量密度,具有快速的锂离子存储能力。
    As a holy grail in electrochemistry, both high-power and high-energy electrochemical energy storage system (EES) has always been a pursued dream. To simultaneously achieve the \"both-high\" EES, a rational design of structure and composition for storage materials with characteristics of battery-type and capacitor-type storage is crucial. Herein, fluorine-nitrogen co-implanted carbon tubes (FNCT) have been designed, in which plentiful active sites and expanded interlayer space have been created benefiting from the heteroatom engineering and the fluorine-nitrogen synergistic effect, thus the above two-type storage mechanism can get an optimal balance in the FNCT. The implanted fluorine heteroatoms can not only amplify interlayer spacing, but also induce the transformation of nitrogen configuration from pyrrole nitrogen to pyridine nitrogen, further promoting the activity of the carbon matrix. The extraordinary electrochemical performance as results can be witnessed for FNCT, which exhibit fast lithium-ion storage capability with a high energy density of 119.4 Wh kg-1 at an ultrahigh power density of 107.5 kW kg-1 .
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    包括电荷转移的法拉第反应通常伴随着主体内部的扩散限制。具有快速离子传输的导电二维框架(2DMOF)可以将电荷转移和多孔结构内部的快速扩散相结合。为了研究由颗粒形态引起的剩余扩散限制,Cu-2,3,6,7,10,11-六羟基三苯撑(Cu3(HHTP)2)的不同合成路线,铜基2DMOF,用于获得片状和杆状MOF颗粒。对于氧化还原活性Li+离子储存,对两种形态进行了系统表征和评估。通过X射线吸收光谱法研究了氧化还原机理,FTIR光谱和原位XRD。通过循环伏安法和阻抗光谱法比较了两种类型关于Li离子存储的动力学性质。可以观察到2DMOF的颗粒形态对电化学Li+离子存储的动力学方面的显著影响。本研究为优化氧化还原活性多孔结构以克服法拉第过程的扩散限制开辟了道路。
    Faradaic reactions including charge transfer are often accompanied with diffusion limitation inside the bulk. Conductive two-dimensional frameworks (2D MOFs) with a fast ion transport can combine both-charge transfer and fast diffusion inside their porous structure. To study remaining diffusion limitations caused by particle morphology, different synthesis routes of Cu-2,3,6,7,10,11-hexahydroxytriphenylene (Cu3 (HHTP)2 ), a copper-based 2D MOF, are used to obtain flake- and rod-like MOF particles. Both morphologies are systematically characterized and evaluated for redox-active Li+ ion storage. The redox mechanism is investigated by means of X-ray absorption spectroscopy, FTIR spectroscopy and in situ XRD. Both types are compared regarding kinetic properties for Li+ ion storage via cyclic voltammetry and impedance spectroscopy. A significant influence of particle morphology for 2D MOFs on kinetic aspects of electrochemical Li+ ion storage can be observed. This study opens the path for optimization of redox active porous structures to overcome diffusion limitations of Faradaic processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    具有较高的理论比容量,已知低成本MoO3是锂离子电池的有前途的阳极。然而,低电导率和缓慢的反应动力学限制了其锂离子存储能力。为了改善这一点,相位工程方法用于制造正交/单斜MoO3(α/h-MoO3)同质结。发现α/h-MoO3具有过多的异相界面。这不仅在MoO3中创建更多的活性位点用于Li+存储,它规范了当地的协调环境和电子结构,从而诱导用于增强电子/离子传输的内置电场。与仅使用单相h-MoO3或α-MoO3相比,在使用α/h-MoO3时,可以获得更高的容量(在0.1Ag-1时为1094mAhg-1)和倍率性能(在5.0Ag-1时为406mAhg-1)。这项工作提供了在LIB中使用α/h-MoO3异相同质结的选择。
    With high theoretical specific capacity, the low-cost MoO3 is known to be a promising anode for lithium-ion batteries. However, low electronic conductivity and sluggish reaction kinetics have limited its ability for lithium ion storage. To improve this, the phase engineering approach is used to fabricate orthorhombic/monoclinic MoO3 (α/h-MoO3) homojunctions. The α/h-MoO3 is found to have excessive hetero-phase interface. This not only creates more active sites in the MoO3 for Li+ storage, it regulates local coordination environment and electronic structure, thus inducing a built-in electric field for boosting electron/ion transport. In using α/h-MoO3, higher capacity (1094 mAh g-1 at 0.1 A g-1) and rate performance (406 mAh g-1 at 5.0 A g-1) are obtained than when using only the single phase h-MoO3 or α-MoO3. This work provides an option to use α/h-MoO3 hetero-phase homojunction in LIBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    含镍的杂多钒酸盐,Na6[NiV14O40],首次合成作为负极材料应用于高能锂存储应用。Na6[NiV14O40]可以通过适用于低成本大规模生产的简易溶液法制备。所制备的电极提供了约700mAhg-1的高容量,而不会在400个循环中降解,表明优异的循环稳定性。使用操作X射线吸收光谱(XAS)研究了电荷存储的机理,X射线衍射(XRD)过渡X射线显微镜(TXM),和密度泛函理论(DFT)计算。结果表明,在锂化过程中,V5+降低为V2+,表示Na6[NiV14O40]是插入型材料。此外,Na6[NiV14O40]在循环过程中以可忽略的体积膨胀/收缩保持其无定形结构。用作锂离子电池(LIB)的负极,Na6[NiV14O40]//LiFePO4全电池具有300Whkg-1的高能量密度。当应用于锂离子电容器时,Na6[NiV14O40]//扩展的中间相碳微珠全电池在175.7和7774.2Wkg-1的功率密度下分别显示218.5和47.9Whkg-1的能量密度。这些发现揭示了负极材料Na6[NiV14O40]是锂离子存储应用的有希望的候选物。
    Ni-containing heteropolyvanadate, Na6[NiV14O40], was synthesized for the first time to be applied in high-energy lithium storage applications as a negative electrode material. Na6[NiV14O40] can be prepared via a facile solution process that is suitable for low-cost mass production. The as-prepared electrode provided a high capacity of approximately 700 mAh g-1 without degradation for 400 cycles, indicating excellent cycling stability. The mechanism of charge storage was investigated using operando X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), transition X-ray microscopy (TXM), and density functional theory (DFT) calculations. The results showed that V5+ was reduced to V2+ during lithiation, indicating that Na6[NiV14O40] is an insertion-type material. In addition, Na6[NiV14O40] maintained its amorphous structure with negligible volume expansion/contraction during cycling. Employed as the negative electrode in a lithium-ion battery (LIB), the Na6[NiV14O40]//LiFePO4 full cell had a high energy density of 300 W h kg-1. When applied in a lithium-ion capacitor, the Na6[NiV14O40]//expanded mesocarbon microbead full cell displayed energy densities of 218.5 and 47.9 W h kg-1 at power densities of 175.7 and 7774.2 W kg-1, respectively. These findings reveal that the negative electrode material Na6[NiV14O40] is a promising candidate for Li-ion storage applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于电场的驱动力,具有电场效应的异质结构可以激发材料的电荷转移动力学。在这里,我们报告了一种新的二硫化铼与氧化铌偶联的ReS2/Nb2O5异质结构,具有相互兼容的能带结构和富集的氧空位。独特的异质结构可以促进电荷的重新分布以诱导内置电场和微局部电场。不出所料,ReS2/Nb2O5异质结构在0.10Ag-1下2400h后显示出良好的锂离子可逆容量,为805mAhg-1,在2.00Ag-1下显示出414mAhg-1。此外,原位X射线衍射和非原位X射线光电子能谱分析揭示了电化学反应过程中ReS2/Nb2O5异质结构的相变过程。这为基于具有双电场驱动电荷转移的异质结构的高性能锂离子存储材料的构建提供了更深入的见解。
    Heterostructures with the electric field effect can excite the charge transfer kinetics of materials due to the driving force of the electric field. Herein, we report a new ReS2/Nb2O5 heterostructure of rhenium disulfide coupled to niobium oxide with a mutually compatible band structure and enriched oxygen vacancies. The unique heterostructure can facilitate the redistribution of charges to induce built-in electric fields and microlocalized electric fields. As expected, the ReS2/Nb2O5 heterostructure shows a superior lithium-ion reversible capacity of 805 mAh g-1 after 2400 h at 0.10 A g-1, and 414 mAh g-1 at 2.00 A g-1. In addition, in situ X-ray diffraction and ex situ X-ray photoelectron spectroscopy analysis reveal the phase transition process of the ReS2/Nb2O5 heterostructure during the electrochemical reaction. This provides deeper insights into the construction of high-performance lithium-ion storage materials based on heterostructures with dual-electric field-driven charge transfer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号