lithium-ion battery

锂离子电池
  • 文章类型: Journal Article
    超声波分层是一种用于直接回收废旧锂离子电池的低能量方法。超声波分层的效率取决于热物理性质(如粘度,表面张力,和蒸气压)进行分层过程的溶剂,和超声源的特性以及安全壳的几何形状。然而,定制解决方案以优化电池阴极涂层的空化和分层的效果尚未得到充分研究。声学检测,高速成像,和声化学发光(SCL)用于研究水-乙二醇体系中的空化过程,并确定定制溶剂组成对空化强度的影响。添加小体积分数的有机溶剂(约10-30体积%),包括乙二醇或甘油,由于这些热物理性质的改变,发现与水性分层溶液的分层显着提高了锂离子电池阴极涂层的分层效率。然而,由于粘度对超声波的信号衰减作用,较大体积分数的乙二醇会降低分层效率。这项研究的结果为优化超声波浴溶液组成以增强薄膜分层过程提供了有价值的见解。
    Ultrasonic delamination is a low energy approach for direct recycling of spent lithium-ion batteries. The efficiency of the ultrasonic delamination relies both on the thermophysical properties (such as viscosity, surface tension, and vapour pressure) of the solvent in which the delamination process is carried out, and the properties of the ultrasound source as well as the geometry of the containment vessel. However, the effect of tailoring solutions to optimise cavitation and delamination of battery cathode coatings has not yet been sufficiently investigated. Acoustic detection, high-speed imaging, and sonochemiluminescence (SCL) are employed to study the cavitation processes in water-glycol systems and identify the effect of tailoring solvent composition on cavitation strength. The addition of small volume fractions of organic solvent (ca. 10-30 vol%), including ethylene glycol or glycerol, to the aqueous delamination solution were found to significantly improve the delamination efficiency of lithium-ion battery cathode coatings due to the alteration of these thermophysical properties. However, greater volume fractions of glycol decrease delamination efficiency due to the signal-dampening effect of viscosity on the ultrasonic waves. The findings of this study offer valuable insights for optimising ultrasonic bath solution composition to enhance film delamination processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    固态电解质,特别是聚合物/陶瓷复合电解质,由于其高离子电导率和机械灵活性,正在成为锂离子电池的有希望的候选人。这些复合材料中无机和有机材料之间的界面在离子传输机制中起着至关重要的作用。虽然锂离子被建议扩散穿过或平行于界面,很少有研究直接研究了这些途径对离子传输的定量影响,并且对它们如何影响整体电导率知之甚少。这里,我们提出了锂离子(Li)在定义明确的聚合物-银铁矿界面上传输的原子研究。我们提出了聚合物-精氨酸界面系统的力场,我们对几个复合系统进行分子动力学和增强的采样模拟,包括聚(环氧乙烷)(PEO)/Li6PS5Cl,氢化丁腈橡胶(HNBR)/Li6PS5Cl,和聚(偏二氟乙烯-共-六氟丙烯)(PVDF-HFP)/Li6PS5Cl。对于这里考虑的材料,锂离子表现出对陶瓷材料的偏好,无机和有机聚合物相之间锂离子的自由能差超过13kBT。不同聚合物材料的锂离子的相对自由能曲线表现出相似的形状,但是它们的大小取决于聚合物和锂离子之间相互作用的强度:聚合物和锂离子之间的相互作用越大,无机材料和有机材料之间的自由能差越小。在大约1.5nm的范围内感觉到界面的影响,之后,聚合物中锂离子的行为与本体中的行为相当。在界面附近,锂离子传输主要发生平行于界面平面,离子迁移率在界面附近相当慢,与聚合物在陶瓷材料附近的降低的分段移动性一致。这些发现提供了对复合系统中离子络合和传输机制的见解,并将有助于改进固体电解质系统的设计。
    Solid-state electrolytes, particularly polymer/ceramic composite electrolytes, are emerging as promising candidates for lithium-ion batteries due to their high ionic conductivity and mechanical flexibility. The interfaces that arise between the inorganic and organic materials in these composites play a crucial role in ion transport mechanisms. While lithium ions are proposed to diffuse across or parallel to the interface, few studies have directly examined the quantitative impact of these pathways on ion transport and little is known about how they affect the overall conductivity. Here, we present an atomistic study of lithium-ion (Li+) transport across well-defined polymer-argyrodite interfaces. We present a force field for polymer-argyrodite interfacial systems, and we carry out molecular dynamics and enhanced sampling simulations of several composite systems, including poly(ethylene oxide) (PEO)/Li6PS5Cl, hydrogenated nitrile butadiene rubber (HNBR)/Li6PS5Cl, and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)/Li6PS5Cl. For the materials considered here, Li-ion exhibits a preference for the ceramic material, as revealed by free energy differences for Li-ion between the inorganic and the organic polymer phase in excess of 13 kBT. The relative free energy profiles of Li-ion for different polymeric materials exhibit similar shapes, but their magnitude depends on the strength of interaction between the polymers and Li-ion: the greater the interaction between the polymer and Li-ions, the smaller the free energy difference between the inorganic and organic materials. The influence of the interface is felt over a range of approximately 1.5 nm, after which the behavior of Li-ion in the polymer is comparable to that in the bulk. Near the interface, Li-ion transport primarily occurs parallel to the interfacial plane, and ion mobility is considerably slower near the interface itself, consistent with the reduced segmental mobility of the polymer in the vicinity of the ceramic material. These findings provide insights into ionic complexation and transport mechanisms in composite systems, and will help improve design of improved solid electrolyte systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们推荐从LiCoO2(LCO)锂离子电池(LIB)阴极中回收钴的最佳实践,方法是(i)使用绿色深共晶溶剂(DES)浸出和(ii)随后的电沉积,通过对氯化胆碱(ChCl):乙二醇(EG)DES的个案研究。DES物理性质(电导率,粘度,和表面张力)通过在1:2和1:5(ChCl:EG)的摩尔比之间改变组成来定制。随着浸出工艺参数(温度,持续时间),增加氢键供体(HBDs)的比例降低了DES表面张力并增强了浸出。使用1:5的ChCl:EGDES在160°C和48小时下实现完全的Co回收。由于DES热降解,不鼓励>160oC的浸出温度。优化了电沉积工艺,以实现高法拉第效率的选择性Co回收。DES的浸出能力与电沉积电池组件的稳定性相反,并且需要调整操作参数以最大程度地减少降解。使用1:5DES渗滤液的优化系统(铜阴极和不锈钢阳极)表现出〜80%的法拉第效率,在50oC时,特定的Co回收率为〜0.8mghr-1cm-1,并且有均匀沉积的证据。DES表面张力是金属回收的关键描述符,并提出了最大限度地选择性回收钴的指导方针。
    We recommend best practices for the recovery of cobalt from LiCoO2 (LCO) lithium-ion battery (LIB) cathodes by (i) leaching using green deep eutectic solvents (DES) and (ii) subsequent electrodeposition, through a case study of the choline chloride (ChCl):ethylene glycol (EG) DES. DES physical properties (conductivity, viscosity, and surface tension) were tailored by varying the composition between mole ratios of 1:2 and 1:5 (ChCl:EG). Examined along with leaching process parameters (temperature, duration), increasing the fraction of hydrogen bond donors (HBDs) decreased DES surface tension and enhanced leaching. Complete Co recovery was achieved using 1:5 ChCl:EG DES at 160oC and 48 hours. Leaching temperatures >160oC are discouraged due to DES thermal degradation. The electrodeposition process was optimized for selective Co recovery with high faradaic efficiency.  The leaching ability of the DES was antithetical to the stability of electrodeposition cell components and required operational parameter adjustment to minimize degradation. The optimized system (copper cathode and stainless-steel anode) employing 1:5 DES leachate exhibited a faradaic efficiency of ~80 %, specific Co recovery of ~0.8 mg hr-1 cm-1 at 50 oC and evidence of uniform deposition. DES surface tension is a key descriptor of metal recovery, and guidelines are presented to maximize selective Co recovery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    高电压LiNi0.5Mn1.5O4(LNMO)阴极在长期循环期间由于锰溶解和高工作电压(~4.95V)而遭受严重的容量退化,这在表面或界面上构成了严重的挑战。此外,传统的离子掺杂和钝化层涂层很难一致地应用于LNMO阴极,因为它们的程序复杂,尤其是在大规模生产中。为了解决这些问题,采用HNO3/H2O2浸出与700°C中间温度下的烧结过程协同作用的策略来实现选择性表面重建。采用最佳的反应物比例来平衡LNMO阴极的容量和循环稳定性。Mn在材料表面的优化化合价组成减轻了Jahn-Teller畸变的发生,伴随着有序和无序相的合理比例以及烧结后氧空位的浓度,这改善了电极和电解质之间的界面行为。在0.5C(1C=147mAhg-1)下进行200次循环后,该方法可提供116.5mAhg-1的高可逆容量,容量保留率为91.30%,容量保留率为110mAhg-1,在2C下进行500次循环后,容量保留率为86.85%。利用氧化(O22-)的保护作用和酸(H+)的侵蚀作用,提出实现先进LNMO阴极的区域表面重构。这开辟了一种以低成本和大规模生产能力改进氧化物基阴极材料的策略,尤其是支持高一致性。
    High-voltage LiNi0.5Mn1.5O4 (LNMO) cathodes suffer from severe capacity degradation during long-term cycling due the manganese dissolution and their high operating voltage (∼4.95 V), which pose serious challenges at the surface or interface. Moreover, both traditional ion-doping and passivation layer coating are difficult to apply consistently to LNMO cathode because of their complicated procedures, especially in large-scale production. To address these issues, a strategy employing HNO3/H2O2 leaching in synergy with a sintering process at a mid-temperature of 700 °C was used to achieve selective surface reconstruction. An optimal ratio of reactants was applied to balance the capacity and the cyclic stability of the LNMO cathode. The optimized valence composition of Mn on the material surface mitigates the occurrence of Jahn-Teller distortion, accompanied by a reasonable ratio of ordered and disordered phases and the concentration of oxygen vacancies after sintering, which improves the interface behavior between the electrode and electrolyte. This method delivers a high reversible capacity of 116.5 mAh g-1 after 200 cycles at 0.5 C (1 C = 147 mAh g-1) with a capacity retention of 91.30% and 110 mAh g-1 with a remarkably high capacity retention of 86.85% after 500 cycles at 2 C. This balanced approach, utilizing the protective effects of oxidation (O22-) and the erosive action of acid (H+), is proposed to achieve regional surface reconstruction of advanced LNMO cathode. This opens up a strategy for improving oxide-based cathode materials with low cost and mass production capability, especially favoring high consistency.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    锂离子(Li-ion)电池对目前电动汽车(EV)的发展起到了关键作用,而市场上的锂离子电池来自不同的制造商。验证用于各种电池化学物质的电池管理系统(BMS)的性能是一项复杂的任务。本文提出了一种用于电动汽车应用的高保真锂离子电池模拟器。仿真器利用由一系列性能测试和特殊设计的硬件平台参数化的电池模型。选择三阶电池等效电路模型(ECM)以在处理器中提供电压和电流参考信号。随后,硬件根据参考信号产生高电压和电流信号。为了确保电池ECM的高精度,在充电和放电条件下选择37Ah镍锰钴(NMC)电池进行测试,以及在-30℃至45℃的温度范围内。在充电和放电模式下验证电池仿真器的准确性和动态性能验证。
    Lithium-ion (Li-ion) battery has played a key role for the development of electric vehicle (EV) at present, while the Li-ion batteries in the market come from different manufactures. Verifying the performance of the battery management system (BMS) for various battery chemistries is a complex undertaking. This paper proposes a high-fidelity Li-ion battery emulator for EV applications. The emulator utilizes a battery model parameterized by a series of performance tests and a special-designed hardware platform. A three-order battery equivalent circuit model (ECM) is selected to provide the voltage and current reference signal in the processor. Subsequently, the hardware generates the high voltage and current signal in accordance with the reference. To ensure the high accuracy of the battery ECM, a 37 Ah nickel manganese cobalt (NMC) battery was selected for testing under both charge and discharge conditions, as well as across a temperature range of - 30℃ to 45℃. The battery emulator is verified on charge and discharge mode for both accuracy and dynamic performance validations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:我们进行了一项多机构观察性研究,以研究低级别晚期卵巢癌(LGSOC)初级治疗后的维持激素治疗是否与总体生存优势相关。
    方法:我们纳入了2004年1月1日至2019年12月31日之间诊断为组织学确诊的III期或IV期LGSOC患者,在美国癌症委员会认可的癌症项目中接受治疗。在诊断后6个月内接受激素治疗的患者与在该时间段内没有开始激素治疗的对照者通过风险集倾向评分匹配进行匹配。主要结果是在开始HT或观察后五年内因任何原因死亡的风险。
    结果:有296名患者在诊断后6个月内开始了维持激素治疗,有2805名潜在的对照组。接受激素治疗的患者更常在学术医疗中心接受治疗(55%vs.44%),在研究期间晚些时候诊断(62%vs.23%在2018-2019年被诊断),并且在初始治疗期间经常没有接受化疗(45%vs.17%)。风险集倾向评分匹配后,我们确定了225例接受HT治疗的患者和225例未经治疗的对照,这些患者在测量的协变量方面相似.在匹配的队列中,激素治疗与死亡风险降低相关(风险比0.60;95%CI0.38-0.94),对应的60个月生存率为75%,而65%。
    结论:在LGSOC的初级管理之后,与观察相比,维持激素治疗与总生存期改善相关.
    OBJECTIVE: We conducted a multi-institutional observational study to investigate whether maintenance hormone therapy following primary treatment of low-grade advanced-stage ovarian cancer (LGSOC) is associated with an overall survival advantage.
    METHODS: We included patients with histologically confirmed stage III or IV LGSOC diagnosed between Jan 1, 2004, and Dec 31, 2019, treated in Commission on Cancer-accredited cancer programs in the US. Patients who received hormone therapy within six months of diagnosis were matched to controls who did not initiate hormone therapy during this timeframe by risk-set propensity score matching. The primary outcome was the risk of death from any cause within five years of initiation of HT or observation.
    RESULTS: There were 296 patients who initiated maintenance hormone therapy within six months of diagnosis and 2805 potential controls. Patients who received hormone therapy were more often treated in academic medical centers (55% vs. 44%), diagnosed later in the study period (62% vs. 23% diagnosed in 2018-2019), and frequently received no chemotherapy during initial treatment (45% vs. 17%). After risk set propensity score matching, we identified 225 patients treated with HT and 225 untreated controls who were otherwise similar with respect to measured covariates. In the matched cohort, hormone therapy was associated with a reduction in the risk of death (hazard ratio 0.60; 95% CI 0.38-0.94), corresponding to a 60-month survival of 75% compared with 65%.
    CONCLUSIONS: Following primary management of LGSOC, maintenance hormone therapy was associated with improved overall survival compared with observation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    具有高放电容量的过渡金属氧化物(TMO)被认为是锂离子电池最有前途的阳极之一。然而,TMO的实际利用在很大程度上受到体积膨胀引起的循环稳定性问题的限制,结构坍塌。在这项研究中,我们使用溶液燃烧法合成了高熵尖晶石氧化物材料(FeCrNiMnZn)3O4。通过高熵工程实现五个阳离子,抑制了电极材料在充电和放电过程中的聚集和膨胀,循环稳定性增强。结果表明,熵诱导的高密度晶界和尖晶石结构的可逆性有助于提高容量和循环稳定性。在这里,(FeCrNiMnZn)3O4在0.1Ag-1下提供高容量(1374mAhg-1),并在电流密度为0.5Ag-1的200次循环中提供优异的循环稳定性(几乎100%)。该研究为高熵氧化物阳极电极的设计提供了有价值的理解。
    Transition metal oxides (TMOs) with high discharge capacity are considered as one of the most promising anodes for lithium-ion batteries. However, the practical utilization of TMOs is largely limited by cycling stability issues arising from volume expansion, structural collapse. In this study, we synthesized a high-entropy spinel oxide material (FeCrNiMnZn)3O4 using a solution combustion method. With the implementation of five cations through high-entropy engineering, the agglomeration and expansion of the electrode materials during charging and discharging are suppressed, and the cycling stability is enhanced. The results demonstrate that entropy-induced high-density grain boundaries and the reversibility of spinel structure contribute to improved capacity and cycling stability. Herein, (FeCrNiMnZn)3O4 provides a high capacity (1374 mAh g-1) at 0.1 A g-1 and superior cycling stability (almost 100 %) during 200 cycles with a current density of 0.5 A g-1. The study provides valuable understanding for designing the high entropy oxides anode electrodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这里,覆盖有Cu2S纳米片衬底(Cu/CuO/Cu2S)的Cu泡沫支撑的CuO纳米线阵列被用作光可充锂离子电池(PR-LIBs)的有效光电极。组装的PR-LIB具有出色的太阳能转换效率以及出色的锂存储能力。没有电源,光充电的PR-LIB在0.05mAcm-2的恒定电流密度下持续放电过程63.0h。相应的太阳能到电能转换效率为4.50%,这是最近报道的当代技术中令人印象深刻的成就。机理研究表明,Cu/CuO/Cu2S光生载流子在充电和放电反应中根据不同的氧化和还原反应增强了Li的提取和插入。这项研究描绘了一个完善的模型系统,并提出了开发高效异质结光电极的创新方向,极大地推动了PR-LIB技术的发展。
    Herein, Cu-foam-supported CuO nanowire arrays covered with Cu2S nanosheet substrates (Cu/CuO/Cu2S) are adopted as efficient photoelectrodes for photorechargeable lithium-ion batteries (PR-LIBs). The assembled PR-LIB exhibits remarkable solar energy conversion efficiency alongside superior lithium storage capabilities. Without an electrical power supply, the photocharged PR-LIB sustained a discharge process for 63.0 h under a constant current density of 0.05 mA cm-2. The corresponding solar-to-electrical energy conversion efficiency is 4.50%, which is an impressive achievement among recently reported contemporary technologies. Mechanism investigation shows that the Cu/CuO/Cu2S photogenerated carriers augment the extraction and insertion of Li+ according to different oxidation and reduction reactions in the charging and discharging reactions. This research delineates a refined model system and proposes innovative directions for developing efficient heterojunction photoelectrodes, significantly propelling the development of PR-LIB technology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    二维(2D)异质结构材料,结合各个构建块的集体优势和协同特性,作为电极材料科学的一种新范式,引起了人们的极大兴趣。2D过渡金属碳化物和氮化物家族(例如,MXenes)已成为制造具有强大应用性能的功能材料的吸引人的平台。在这里,通过静电自组装程序制备2DLiFe0.3Mn0.7PO4(LFMP)-on-MXene异质结构复合材料。MXene表面上的官能团具有高度的电负性特性,有助于将LFMPs掺入MXene中以构建异质结构复合材料。纳米级LiFe0.3Mn0.7PO4和MXene的特殊异质结构在阴极中提供了快速的Li和电子传输。这种LiFe0.3Mn0.7PO4-3.0wt%MXene复合材料在50°C下可表现出98.3mAhg-1的优异倍率性能,以及非常稳定的循环性能,在1000次循环后在5C下的容量保持率为94.3%。此外,具有稳定循环能力的NaFe0.3Mn0.7PO4-3.0wt%MXene可以通过LiFe0.3Mn0.7PO4-3.0wt%MXene的电化学转化方法获得。非原位XRD表明,在MXene上的LiFe0.3Mn0.7PO4实现了具有固溶体相变的高度可逆的结构演变(LFMP→LixFe0.3Mn0.7PO4(LxFMP),LxFMP→LFMP)和两相反应(LxFMP→→Fe0.3Mn0.7PO4(FMP))。这项工作为使用MXenes制造锂离子电池的2D异质结构提供了新的方向。
    Two-dimensional (2D) heterostructure materials, incorporating the collective strengths and synergetic properties of individual building blocks, have attracted great interest as a novel paradigm in electrode materials science. The family of 2D transition metal carbides and nitrides (e.g., MXenes) has become an appealing platform for fabricating functional materials with strong application performance. Herein, a 2D LiFe0.3Mn0.7PO4 (LFMP)-on-MXene heterostructure composite is prepared through an electrostatic self-assembly procedure. The functional groups on the surface of MXenes possess highly electronegative properties that facilitate the incorporation of LFMPs into MXenes to construct heterostructure composites. The special heterostructure of nanosized-LiFe0.3Mn0.7PO4 and MXene provides rapid Li+ and electron transport in the cathodes. This LiFe0.3Mn0.7PO4-3.0 wt% MXene composite can exhibit an excellent rate capability of 98.3 mAh g-1 at 50C and a very stable cycling performance with a capacity retention of 94.3 % at 5C after 1000 cycles. Furthermore, NaFe0.3Mn0.7PO4-3.0 wt% MXene with stable cyclability can be obtained by an electrochemical conversion method with LiFe0.3Mn0.7PO4-3.0 wt% MXene. Ex-situ XRD suggests that LiFe0.3Mn0.7PO4-on-MXene achieves a highly reversible structural evolution with a solid solution phase transformation (LFMP→LixFe0.3Mn0.7PO4 (LxFMP), LxFMP→LFMP) and a two-phase reaction (LxFMP←→Fe0.3Mn0.7PO4 (FMP)). This work provides a new direction for the use of MXenes to fabricate 2D heterostructures for lithium-ion batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    预测锂离子电池(LIB)的容量对于确保LIB的安全运行和延长其使用寿命至关重要。然而,LIB容易受到环境干扰的影响,这可能会影响预测的准确性。此外,预测LIB容量的过程中的可解释性对于用户理解模型也很重要,发现问题,并做出决定。在这项研究中,介绍了一种考虑环境干扰(IM-EI)的LIB容量预测方法。斯皮尔曼相关系数,可解释性原则,信念规则库(BRB),和可解释性约束用于提高IM-EI的预测精度和可解释性。引入动态属性可靠性以最小化环境干扰的影响。实验结果表明,IM-EI模型与其他模型相比具有较好的可解释性和较高的精度。在干扰条件下,该模型仍具有较好的精度和鲁棒性。
    Predicting the capacity of lithium-ion battery (LIB) plays a crucial role in ensuring the safe operation of LIBs and prolonging their lifespan. However, LIBs are easily affected by environmental interference, which may impact the precision of predictions. Furthermore, interpretability in the process of predicting LIB capacity is also important for users to understand the model, identify issues, and make decisions. In this study, an interpretable method considering environmental interference (IM-EI) for predicting LIB capacity is introduced. Spearman correlation coefficients, interpretability principles, belief rule base (BRB), and interpretability constraints are used to improve the prediction precision and interpretability of IM-EI. Dynamic attribute reliability is introduced to minimize the effect of environmental interference. The experimental results show that IM-EI model has good interpretability and high precision compared to the other models. Under interference conditions, the model still has good precision and robustness.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号