lithium extraction

锂提取
  • 文章类型: Journal Article
    具有精确Li+/Na+和Li+/K+分离的膜对于从盐水中提取锂以解决锂供应短缺是必要的。然而,由于相似的效价,实现这一目标仍然是一个艰巨的挑战,化学性质,以及这些一价阳离子之间微妙的原子尺度差异。在这里,受到生物离子通道严格的尺寸筛分效应的启发,提出了一种基于无孔结晶材料的膜,具有结构刚性,尺寸限制,和长距离有序离子通道,仅渗透裸露的Li,但阻断Na和K。这种裸-Li+筛分行为不仅能够实现前所未有的Li+/Na+和Li+/K+选择性分别高达2707.4和5109.8,甚至超过最先进的膜至少两个数量级,但也展示了令人印象深刻的Li+/Mg2+和Li+/Ca2+分离能力。此外,这种生物膜必须用于从富含Na+的天然盐水中创建一步锂提取策略,K+,和Mg2+,而不利用化学品或产生固体废物,它同时产生氢气。这项研究提出了一种新型的离子筛分膜,也提供了先进膜的设计范式和发展的设想,离子分离,和锂提取。
    Membranes with precise Li+/Na+ and Li+/K+ separations are imperative for lithium extraction from brine to address the lithium supply shortage. However, achieving this goal remains a daunting challenge due to the similar valence, chemical properties, and subtle atomic-scale distinctions among these monovalent cations. Herein, inspired by the strict size-sieving effect of biological ion channels, a membrane is presented based on nonporous crystalline materials featuring structurally rigid, dimensionally confined, and long-range ordered ion channels that exclusively permeate naked Li+ but block Na+ and K+. This naked-Li+-sieving behavior not only enables unprecedented Li+/Na+ and Li+/K+ selectivities up to 2707.4 and 5109.8, respectively, even surpassing the state-of-the-art membranes by at least two orders of magnitude, but also demonstrates impressive Li+/Mg2+ and Li+/Ca2+ separation capabilities. Moreover, this bioinspired membrane has to be utilized for creating a one-step lithium extraction strategy from natural brines rich in Na+, K+, and Mg2+ without utilizing chemicals or creating solid waste, and it simultaneously produces hydrogen. This research has proposed a new type of ion-sieving membrane and also provides an envisioning of the design paradigm and development of advanced membranes, ion separation, and lithium extraction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    证实了SO42-对Li+解吸和再吸附的不利影响随着SO42-/Cl-比例的增加而加剧,导致铝基吸附剂(Li/Al-LDHs)在硫酸盐型盐水中的应用局限性。基于Li/Al-LDHs的层间阴离子可交换性,在分子动力学的帮助下,设计了一步层间恢复策略,以优先解吸的Cl-快速取代插层的SO42-,旨在从根本上解决自行车性能的损害。通过在各种硫酸盐型盐水中恢复的吸附和解吸能力验证了该策略的有效性。此外,建立了硫酸盐型盐水的增强锂提取工艺,并在固定床循环中对具有不同组成的复杂盐水具有普遍适用性。通过调节执行频率,提高了Li+的提取效率,与常规工艺相比,单位时间的提取量可增加100%以上。
    It was confirmed that the detrimental effect of SO42- on Li+ desorption and readsorption intensified with the increase of the SO42-/Cl- ratio, resulting in application limitations of aluminum-based adsorbent (Li/Al-LDHs) in sulfate-type brines. Based on the interlayer anion exchangeability of Li/Al-LDHs, a one-step interlayer restoration strategy was designed with the assistance of molecular dynamics to rapidly substitute the intercalated SO42- with preferentially desorbed Cl-, aiming to fundamentally address the damage to the cycling performance. The strategy effectiveness was verified by the restored adsorption and desorption capacities in various sulfate-type brines. Furthermore, enhanced lithium extraction processes for sulfate-type brines were established and showed universal applicability for complex brines with different compositions during fixed-bed cycles. By regulating the implementation frequency, the Li+ extraction efficiency was improved, in which the extraction amount per unit time could increase by more than 100% compared with the conventional process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    锂辉石浮选是最常用的锂矿物浓缩方法。然而,它面临着与低捕收剂回收率和矿物表面特征相似性有关的重大挑战,这使得这种有价值的矿物难以有效分离。出于这个原因,许多研究人员进行了研究来解决和面对这个问题。在这项工作中,使用关键字和搜索查询进行了详尽的书目搜索,结果根据时间分为三个部分,方法论,和主题标准。第一部分涵盖1950年至2004年的时期,重点是实验测试。第二部分涵盖从2004年到现在,重点是浮选测试和测量分析。同时,第三部分从2011年至今,基于分子动力学模拟。涵盖的主题包括锂辉石表面特性,金属离子的影响,预处理技术,和收藏家的使用。最终,分子动力学模拟被定位为准确表示实验现象的工具。在这种情况下,MaterialsStudio或Gromacs等专业软件被证明是可靠的仪器,可以对矿物表面和其他元素进行详细研究。这证明了他们对这一科学领域未来研究的考虑。
    Spodumene flotation stands as the most commonly used method to concentrate lithium minerals. However, it faces significant challenges related to low collector recoveries and similarity in the surface characteristics of the minerals, which make the effective separation of this valuable mineral difficult. For this reason, numerous researchers have conducted studies to address and confront this problem. In this work, an exhaustive bibliographic search was carried out using keywords and search queries, and the results were structured in three sections according to temporal, methodological, and thematic criteria. The first section covers the period from 1950 to 2004, focusing on experimental tests. The second section covers from 2004 to the present and focuses on flotation tests and measurement analysis. Simultaneously, the third section spans from 2011 to the present and is based on molecular dynamics simulations. Topics covered include spodumene surface properties, the influence of metal ions, pre-treatment techniques, and the use of collectors. Ultimately, molecular dynamics simulations are positioned as a tool that accurately represents experimental phenomena. In this context, specialized software such as Materials Studio or Gromacs prove to be reliable instruments that allow a detailed study of mineral surfaces and other elements to be carried out, which justifies their consideration for future research in this scientific field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    离子筛吸附剂是在实际应用中提取液态锂的有效材料。然而,在海水或盐湖的天然近中性条件下,它的吸附能力和选择性(Li/Mg)受到极大抑制,由于原位释放的H+和Mg2+杂质的干扰。本文提出了一种具有微环境调节功能的吸附剂作为解决方案。在载体中引入季铵基团加速了H+的迁移,同时通过静电排斥防止Mg2+的扩散。此外,它还可以预存OH-,有效地消耗原位产生的氢离子。基于合理的设计,微环境调节策略的碱消耗显着降低到传统加碱方法的1/144。此外,在自然pH条件下,吸附性能显著提高,与商业离子筛吸附剂相比,具有最高33倍的分离因子(选择性)和4倍的吸附能力。这一发展表明了使用微环境调制进行有效锂提取的可行性,并激发了下一代高性能吸附剂的开发。
    Ion-sieve adsorbents are effective materials in practical applications for extracting liquid lithium. However, it is greatly suppressed in adsorption capacity and selectivity (Li/Mg) under natural near-neutral conditions of seawater or salt lakes, due to the interference of in situ released H+ and Mg2+ impurity. This paper proposes an adsorbent with a microenvironment-modulating function as a solution. The introduction of quaternary ammonium groups into the carrier accelerates the migration of H+, while preventing the diffusion of Mg2+ by electrostatic repulsion. Besides, it can also prestore OH-, effectively consuming the generated hydrogen ions in situ. Based on the rational design, the alkali consumption of the microenvironment-modulating strategy is dramatically reduced to 1/144 of the traditional alkali-adding method. Additionally, adsorption performance is significantly promoted under natural pH conditions, with a maximum 33 times higher separation factor (selectivity) and 4 times higher adsorption capacity than commercial ion-sieve adsorbents. This development indicates the feasibility of using microenvironment modulation for effective lithium extraction and inspires the development of next-generation high-performance adsorbents.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    从海水中提取锂已成为解决日益严重的锂短缺问题的颠覆性平台。然而,以节能的方式从海水中实现高效和持久的锂提取是具有挑战性的,由海水中低浓度的锂离子(Li+)和高浓度的干扰离子所施加。这里,我们报告了开发光热“离子泵”(PIPs)的简单和通用策略,以实现节能,增强,在阳光下从海水中提取耐久的锂。PIP的关键设计在于亲水性Li捕集纳米纤维核和疏水性光热壳的功能融合和空间构型操纵,以控制重力驱动的水流和太阳能驱动的水蒸发。这种协同作用使PIP能够实现自发的,连续,增强Li+补充-扩散-富集,以及规避浓度极化和干扰离子结垢的影响。我们证明,我们的PIP在Li捕获率和出色的Li分离因子方面表现出了显着提高,但能耗却超低。此外,我们的PIP提供超稳定的Li+捕集性能,即使在140小时的高浓度干扰离子下也不会结垢,与传统光热配置中近55.6%的显著下降相反。在这项工作中开发的设计概念和材料工具包还可以在从海水和其他地方提取高附加值资源方面找到应用。
    Extracting lithium from seawater has emerged as a disruptive platform to resolve the issue of an ever-growing lithium shortage. However, achieving highly efficient and durable lithium extraction from seawater in an energy-efficient manner is challenging, as imposed by the low concentration of lithium ions (Li+) and high concentration of interfering ions in seawater. Here, we report a facile and universal strategy to develop photothermal \"ion pumps\" (PIPs) that allow achieving energy-efficient, augmented, and durable lithium extraction from seawater under sunlight. The key design of PIPs lies in the function fusion and spatial configuration manipulation of a hydrophilic Li+-trapping nanofibrous core and a hydrophobic photothermal shell for governing gravity-driven water flow and solar-driven water evaporation. Such a synergetic effect allows PIPs to achieve spontaneous, continuous, and augmented Li+ replenishment-diffusion-enrichment, as well as circumvent the impact of concentration polarization and scaling of interfering ions. We demonstrate that our PIPs exhibit dramatic enhancement in Li+ trapping rate and outstanding Li+ separation factor yet have ultralow energy consumption. Moreover, our PIPs deliver ultrastable Li+ trapping performance without scaling even under high-concentration interfering ions for 140 h operation, as opposed to the significant decrease of nearly 55.6% in conventional photothermal configuration. The design concept and material toolkit developed in this work can also find applications in extracting high-value-added resources from seawater and beyond.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    碳酸锂(Li2CO3)在推进现有技术的锂离子电池(LIBs)以实现高效的能量储存方面发挥着至关重要的作用。锂的主要来源是富含锂的盐水,有复杂的成分。从盐水中提取的常规方法涉及繁琐的方法,其通常导致排放和/或大量的废水。为了应对这些环境挑战,在环境压力下的新型环保锂提取工艺是必要的。在这个项目中,我们开发了一种利用NASICON型固态电解质(LATP)在380°C的温度下从低纯度来源中提取氯化锂的电解工艺。为了降低锂源的熔点,引入ZnCl2作为助熔剂。电解过程有效地将Li+与其他共存离子分离,但导致它们与Zn2+的混合物。随后,采用纯化和碳酸化工艺生产高纯度Li2CO3(98.9%)。我们还获得了作为有价值副产物的高纯度Zn(OH)2(>99.9%)。尽管形成了色心,导致LATP圆盘在电解过程中从白色变为黑色,它表现出足够的离子导电性成功的锂提取。我们的环保方法为高效和可持续的锂提取提供了一条有前途的途径,有助于LIB技术在储能应用中的进步。
    Lithium carbonate (Li2CO3) plays a crucial role in advancing state-of-the-art lithium-ion batteries (LIBs) for efficient energy storage. The primary source of lithium is lithium-rich brines, which have complex compositions. Conventional extraction processes from brines involve cumbersome methods that often lead to emissions and/or large volumes of wastewater. To address these environmental challenges, a novel and eco-friendly lithium extraction process under ambient pressure is necessary. In this project, we developed an electrolytic process utilizing a NASICON-type solid-state electrolyte (LATP) to extract lithium chloride from low-purity sources at a temperature of 380 °C. To reduce the melting points of the lithium sources, ZnCl2 was introduced as a fluxing agent. The electrolytic process effectively separated Li+ from other coexisting ions, but resulted in their mixture with Zn2+. Subsequently, purification and carbonation processes were employed to produce high-purity Li2CO3 (98.9 %). We also obtained high-purity Zn(OH)2 (>99.9 %) as a value by-product. Despite the formation of color centers that caused the LATP disk to change from white to black during the electrolytic process, it exhibited sufficient ionic conductivity for successful lithium extraction. Our environmentally friendly approach offers a promising pathway for efficient and sustainable lithium extraction, contributing to the advancement of LIB technology for energy storage applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物离子通道利用各种策略的协同作用来实现高选择性离子筛分。例如,钾通道使用官能团和埃大小的孔来区分敌对离子并富集目标离子。受此启发,我们构建了一个由冠醚支撑的层状晶体,该晶体结合了这些策略以实现高Li选择性。柱状通道和冠醚具有埃级大小。冠醚特别允许Li+的低势垒传输。通道吸引和富集Li+离子达几个数量级。因此,我们的材料从各种常见离子中筛选出Li+,如Na+,K+,Ca2+,Mg2+和Al3+。此外,通过自发富集Li+离子,它在Li+浓度仅为25μM的人工海水中实现了1422的有效Li+/Na+选择性。我们希望这项工作能够激发提取锂和其他稀金属离子的技术。
    Biological ion channels use the synergistic effects of various strategies to realize highly selective ion sieving. For example, potassium channels use functional groups and angstrom-sized pores to discriminate rival ions and enrich target ions. Inspired by this, we constructed a layered crystal pillared by crown ether that incorporates these strategies to realize high Li+ selectivity. The pillared channels and crown ether have an angstrom-scale size. The crown ether specifically allows the low-barrier transport of Li+ . The channels attract and enrich Li+ ions by up to orders of magnitude. As a result, our material sieves Li+ out of various common ions such as Na+ , K+ , Ca2+ , Mg2+ and Al3+ . Moreover, by spontaneously enriching Li+ ions, it realizes an effective Li+ /Na+ selectivity of 1422 in artificial seawater where the Li+ concentration is merely 25 μM. We expect this work to spark technologies for the extraction of lithium and other dilute metal ions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这项研究中,包括电化学阴极沉积的三步策略,自氧化,并应用水热反应在碳布(LMOns@CC)上制备LiMn2O4纳米片,作为混合电容去离子(CDI)电池中的无粘合剂阴极,用于从盐湖盐水中选择性提取锂。无粘合剂的LMOns@CC电极由碳布基底上的数十个2DLiMn2O4纳米片构成,导致具有分层纳米结构的高度有序纳米片的均匀2D阵列。LMOns@CC电极的充电/放电过程表明,可见的氧化还原峰和高伪电容贡献率赋予LMOns@CC阴极在1.2V时的最大Li离子电吸附容量为4.71mmolg-1。LMOns@CC电极具有出色的循环稳定性,在10次吸收-解吸循环中具有97.4%的高容量保留率和0.35%的锰质量溶解率。密度泛函理论(DFT)的理论计算验证了LMOns@CC电极的Li选择性归因于Li离子比其他离子更大的吸附能。最后,对天然西藏盐湖卤水中Li+离子的选择性萃取性能表明,LMOns@CC具有选择性(αMg2+Li+$\\alpha_{{\\mathrm{Mg}}^{2+}}^{\\mathrm{Li}}^+}$=7.48)和优异的循环稳定性(100次循环),这将使其成为从盐湖中提取锂的候选电极。
    In this study, a three-step strategy including electrochemical cathode deposition, self-oxidation, and hydrothermal reaction is applied to prepare the LiMn2 O4 nanosheets on carbon cloth (LMOns@CC) as a binder-free cathode in a hybrid capacitive deionization (CDI) cell for selectively extracting lithium from salt-lake brine. The binder-free LMOns@CC electrodes are constructed from dozens of 2D LiMn2 O4 nanosheets on carbon cloth substrates, resulting in a uniform 2D array of highly ordered nanosheets with hierarchical nanostructure. The charge/discharge process of the LMOns@CC electrode demonstrates that visible redox peaks and high pseudocapacitive contribution rates endow the LMOns@CC cathode with a maximum Li+ ion electrosorption capacity of 4.71 mmol g-1 at 1.2 V. Moreover, the LMOns@CC electrode performs outstanding cycling stability with a high-capacity retention rate of 97.4% and a manganese mass dissolution rate of 0.35% over ten absorption-desorption cycles. The density functional theory (DFT) theoretical calculations verify that the Li+ selectivity of the LMOns@CC electrode is attributed to the greater adsorption energy of Li+ ions than other ions. Finally, the selective extraction performance of Li+ ions in natural Tibet salt lake brine reveals that the LMOns@CC has selectivity ( α Mg 2 + Li + $\\alpha _{{\\mathrm{Mg}}^{2 + }}^{{\\mathrm{Li}}^ + }$ = 7.48) and excellent cycling stability (100 cycles), which would make it a candidate electrode for lithium extraction from salt lakes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    高效的Mg2+/Li+分离对于全球应对锂短缺至关重要。然而,目前的纳滤膜具有低效率和/或较差的可扩展性,因为膜的理想特性是纠缠和权衡的。这项工作报告了“标记修饰”化学来应对这一挑战。设计了3-溴-三甲基丙-1-溴化铵(E1)和3-氨基丙基-三甲基氮杂(E2)的混合物来修饰聚乙烯亚胺-均苯三甲酰氯(PEI-TMC)膜。E1和E2与PEI和TMC反应,分别,因此,膜性质(亲水性,孔径,电荷)被解开,同时加剧。改性膜的渗透率(34.3Lm-2h-1bar-1)和Mg2/Li选择性(23.2)是原始膜的〜4倍和〜2倍,并在30天的测试中保持稳定。在所有类似的纳滤膜中,渗透率最高。标记改性方法能够制备大面积膜和模块,其从模拟盐水产生高纯度碳酸锂(Li2CO3)。
    Efficient Mg2+ /Li+ separation is crucial to combating the lithium shortage worldwide, yet current nanofiltration membranes suffer from low efficacy and/or poor scalability, because desirable properties of membranes are entangled and there is a trade-off. This work reports a \"tagged-modification\" approach to tackle the challenge. A mixture of 3-bromo-trimethylpropan-1-aminium bromide (E1 ) and 3-aminopropyltrimethylazanium (E2 ) was designed to modify polyethylenimine - trimesoyl chloride (PEI-TMC) membranes. E1 and E2 reacted with the PEI and TMC, respectively, and thus, the membrane properties (hydrophilicity, pore sizes, charge) were untangled and intensified simultaneously. The permeance (34.3 L m-2  h-1  bar-1 ) and Mg2+ /Li+ selectivity (23.2) of the modified membranes are about 4 times and 2 times higher than the pristine membrane, and they remain stable in a 30-days test. The permeance is the highest among all analogous nanofiltration membranes. The tagged-modification method enables the preparation of large-area membranes and modules that produce high-purity lithium carbonate (Li2 CO3 ) from simulated brine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纳滤(NF)是从高Mg2/Li质量比的盐水湖中提取Li的有前途且可持续的工艺。然而,在工艺规模上存在Li/Mg选择性和Li回收率之间的权衡,单程NF方法中商业和实验室制造的NF膜的Li/Mg选择性不足以达到工业上需要的Li纯度。为了克服这一挑战,我们提出了一种具有盐水再循环的多程NF工艺,以在不牺牲Li回收率的情况下实现高选择性。我们通过实验证明,尽管共存阳离子导致Li回收率受损,但使用市售NF膜的三遍NF工艺的Li/Mg选择性仍可超过1000。我们的理论分析进一步预测,具有盐水再循环的四通NF工艺可以同时实现超过4500的超高Li/Mg选择性和超过95%的Li回收率。这种提出的方法可以潜在地促进各种有效的基于NF的溶质-溶质分离,并有助于开发新的基于膜的分离技术。
    Nanofiltration (NF) is a promising and sustainable process to extract Li+ from brine lakes with high Mg2+/Li+ mass ratios. However, a trade-off between Li/Mg selectivity and Li recovery exists at the process scale, and the Li/Mg selectivity of commercially and lab-made NF membranes in a single-pass NF process is insufficient to achieve the industrially required Li purity. To overcome this challenge, we propose a multipass NF process with brine recirculation to achieve high selectivity without sacrificing Li recovery. We experimentally demonstrate that Li/Mg selectivity of a three-pass NF process with a commercial NF membrane can exceed 1000, despite the compromised Li recovery as a result of co-existing cations. Our theoretical analysis further predicts that a four-pass NF process with brine recirculation can simultaneously achieve an ultrahigh Li/Mg selectivity of over 4500 and a Li recovery of over 95%. This proposed process could potentially facilitate efficient NF-based solute-solute separations of all kinds and contribute to the development of novel membrane-based separation technologies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号