liquid hot water pretreatment

  • 文章类型: Journal Article
    In recent years, lignocellulosic biomass has emerged as one of the most versatile energy sources among the research community for the production of biofuels and value-added chemicals. However, biomass pretreatment plays an important role in reducing the recalcitrant properties of lignocellulose, leading to superior quality of target products in bioenergy production. Among existing pretreatment techniques, liquid hot water (LHW) pretreatment has several outstanding advantages compared to others including minimum formation of monomeric sugars, significant removal of hemicellulose, and positive environmental impacts; however, several constraints of LHW pretreatment should be clarified. This contribution aims to provide a comprehensive analysis of reaction mechanism, reactor characteristics, influencing factors, techno-economic aspects, challenges, and prospects for LHW-based biomass pretreatment. Generally, LHW pretreatment could be widely employed in bioenergy processing from biomass, but circular economy-based advanced pretreatment techniques should be further studied in the future to achieve maximum efficiency, and minimum cost and drawbacks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Hazelnut shells, a high lignin containing biomass, were subjected to individual and sequential liquid hot water (LHW), alkaline (AP) and dilute acid pretreatments (DAP). Among the single pretreatments, LHW demonstrated the highest cellulose recovery of 98.1%, DAP resulted in the highest hemicellulose solubilization of 56.0%, and AP of the highest lignin removal of 49.6%. Employing two-step pretreatment on hazelnut shells, in general, demonstrated an enhanced action of the second pretreatment; therefore, the sequence of the pretreatment methods had a significant impact on both substrate characteristics and enzymatic hydrolysis efficiency of biomass. In terms of delignification, AP-LHW achieved 60.7% lignin removal, while LHW-DAP showed the highest hemicellulose removal of 93.8% and DAP-LHW resulted in the highest cellulose recovery of 94.0%. Structural properties of raw and pretreated hazelnut shells were observed by FTIR. The maximum glucose recovery of 54.9% was observed in DAP-LHW pretreated samples. For this pretreatment combination, almost 1.8 MJ total energy was required to recover 10.2 g glucose. The findings indicated that complete removal of the physical barrier of lignin and hemicellulose might not be essential; partial relocation of lignin and alteration of cellulose structure may also be efficient in increasing the sugar recovery from the lignocellulosic biomass.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Experimental conditions of liquid hot water (LHW) pretreatment were tested for two dedicated energy crops, Napiergrass (Pennisetum purpureum) and Energycane (Saccharum officinarum × Saccharum robustum). Both crops showed differential resistance to temperature during pretreatment and differences in response to biomass and enzyme loadings during subsequent enzymatic hydrolysis. Sugar response surfaces, for both glucose release per g pretreated biomass and as percent yield of glucose present in the initial biomass, were estimated using a General Additive Model (GAM) in R to compare non-linear sugar release as temperature, and biomass and enzyme loadings were manipulated. Compared to Napiergrass, more structural glucose is estimated to be recovered from Energycane per g of pretreated biomass under relatively less harsh pretreatment conditions, however, Napiergrass had the highest measured glucose yield. Sugar degradation products (furfural and hydroxymethylfurfural), pH, and biomass recovery differed significantly between crops across pretreatment temperatures, which could adversely affect downstream biochemical processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    This study integrated the sugar and carboxylate platforms to enhance duckweed processing in biorefineries. Two or three bioprocesses (ethanol fermentation, acidogenic digestion, and methanogenic digestion) were sequentially integrated to maximize the carbon-to-carbon conversion of wastewater-derived duckweed into bioproducts, through a series of laboratory-scale experiments. Reactors were fed either raw (dried), liquid-hot-water-pretreated, or enzymatically-saccharified duckweed. Subsequently, the target bioproduct was separated from the reactor liquor and the residues further processed. The total bioproduct carbon yield of 0.69 ± 0.07 g per gram of duckweed-C was obtained by sequential acidogenic and methanogenic digestion. Three sequential bioprocesses revealed nearly as high yields (0.66 ± 0.08 g of bioproduct-C per duckweed-C), but caused more gaseous carbon (dioxide) loss. For this three-stage value cascade, yields of each process in conventional units were: 0.186 ± 0.001 g ethanol/g duckweed; 611 ± 64 mg volatile fatty acids as acetic acid/g VS; and 434 ± 0.2 ml methane/g VS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Adaptive laboratory evolution through 12 rounds of culturing experiments of the nanocellulose-producing bacterium Komagataeibacter hansenii ATCC 23769 in a liquid fraction from hydrothermal pretreatment of corn stover resulted in a strain that resists inhibition by phenolics. The original strain generated nanocellulose from glucose in standard Hestrin and Schramm (HS) medium, but not from the glucose in pretreatment liquid. K. hansenii cultured in pretreatment liquid treated with activated charcoal to remove inhibitors also converted glucose to bacterial nanocellulose and used xylose as carbon source for growth. The properties of this cellulose were the same as nanocellulose generated from media specifically formulated for bacterial cellulose formation. However, attempts to directly utilize glucose proved unsuccessful due to the toxic character of the lignin-derived phenolics, and in particular, vanillan and ferulic acid. Adaptive laboratory evolution at increasing concentrations of pretreatment liquid from corn stover in HS medium resulted in a strain of K. hansenii that generated bacterial nanocellulose directly from pretreatment liquids of corn stover. The development of this adapted strain positions pretreatment liquid as a valuable resource since K. hansenii is able to convert and thereby concentrate a dilute form of glucose into an insoluble, readily recovered and value-added product-bacterial nanocellulose.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Current utilization of reed scraps (RS) from reed pulping mills is just burning and burying, remaining the unused RS a major industry waste. The aim of this study was to valorize RS by utilizing it as feedstock for xylo-oligosaccharide (XOS) production. The RS was subjected to dilute acid, alkaline, and liquid hot water (LHW) pretreatments to get the pretreated RS, which was then subjected to xylanase and subsequently cellulase enzymatic to produce XOS and glucose as well. The highest yield of XOS and glucose were 0.144 g and 0.304 g / g of RS, respectively, which were obtained from the LHW pretreatment under the optimized conditions of 170 °C, 1:8 solid loadings and 30 min duration. Overall, by upgrading RS waste into XOS and glucose as value-added products of reed pulp production, we thereby paved a new way in this research to valorize the waste from reed pulping mills.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    背景:液体热水(LHW)预处理已被认为是用于促进木质纤维素通过生物转化转化为生物燃料的最工业上可行和环境友好的方法之一。然而,预处理水解产物中的木质素碎片优先彼此缩合,然后在苛刻的条件下沉积回纤维素表面。特别是,在高温LHW预处理条件下,木质素倾向于重新定位或重新分布。纤维素表面上的木质素残留物会导致纤维素分解酶的显著非生产性结合,并因此负面影响预处理底物中葡聚糖的酶促转化(EC)。虽然添加剂如牛血清白蛋白(BSA)和吐温系列已被用来减少非生产性结合的酶通过阻断木质素,这些添加剂的高成本或非生物相容性限制了它们在工业应用中的潜力。
    结果:这里,我们首次报道了从廉价的脱脂大豆粉(DSP)中提取的可溶性大豆蛋白(SP)在LHW预处理的木质纤维素底物中显示出优异的促进葡聚糖EC的性能。添加SP(80mg/g葡聚糖)可以很容易地将纤维素酶(Celluclast1.5L®)负荷从96.7降低8倍至12.1mg蛋白质/g葡聚糖,并在水解时间为72小时时达到80%的葡聚糖EC。使用相同的纤维素酶(Celluclast1.5L®)负荷(24.2mg蛋白质/g葡聚糖),LHW预处理竹子中葡聚糖的ECs,桉树,马尾松基质从57%增加,54%和45%(无SP)到87%,94%和86%(含80mgSP/g葡聚糖),分别。当新一代纤维素酶制备物CellicCTec2时,也观察到类似的效果,被使用。机理研究表明,可溶性SP在木质素残留物表面的吸附可以减少纤维素分解酶与木质素的非生产性结合。有效推广所需的SP成本相当于2.9mg纤维素酶(Celluclast1.5L®)蛋白(或1.2FPU/g葡聚糖)的成本,如果使用拟议的半同时糖化和发酵(半SSF)模型。
    结论:通过添加从DSP提取的廉价且生物相容的SP添加剂,可以实现LHW预处理的木质纤维素底物中葡聚糖的接近完全糖化。这种简单但非常有效的技术可以很容易地有助于改善纤维素生物炼制工业的经济性。
    BACKGROUND: Liquid hot water (LHW) pretreatment has been considered as one of the most industrially viable and environment-friendly methods for facilitating the transformation of lignocelluloses into biofuels through biological conversion. However, lignin fragments in pretreatment hydrolysates are preferential to condense with each other and then deposit back onto cellulose surface under severe conditions. Particularly, lignin tends to relocate or redistribute under high-temperature LHW pretreatment conditions. The lignin residues on the cellulose surface would result in significant nonproductive binding of cellulolytic enzymes, and therefore negatively affect the enzymatic conversion (EC) of glucan in pretreated substrates. Although additives such as bovine serum albumin (BSA) and Tween series have been used to reduce nonproductive binding of enzymes through blocking the lignin, the high cost or non-biocompatibility of these additives limits their potential in industrial applications.
    RESULTS: Here, we firstly report that a soluble soy protein (SP) extracted from inexpensive defatted soy powder (DSP) showed excellent performance in promoting the EC of glucan in LHW-pretreated lignocellulosic substrates. The addition of the SP (80 mg/g glucan) could readily reduce the cellulase (Celluclast 1.5 L®) loading by 8 times from 96.7 to 12.1 mg protein/g glucan and achieve a glucan EC of 80% at a hydrolysis time of 72 h. With the same cellulase (Celluclast 1.5 L®) loading (24.2 mg protein/g glucan), the ECs of glucan in LHW-pretreated bamboo, eucalyptus, and Masson pine substrates increased from 57%, 54% and 45% (without SP) to 87%, 94% and 86% (with 80 mg SP/g glucan), respectively. Similar effects were also observed when Cellic CTec2, a newer-generation cellulase preparation, was used. Mechanistic studies indicated that the adsorption of soluble SP onto the surface of lignin residues could reduce the nonproductive binding of cellulolytic enzymes to lignin. The cost of the SP required for effective promotion would be equivalent to the cost of 2.9 mg cellulase (Celluclast 1.5 L®) protein (or 1.2 FPU/g glucan), if a proposed semi-simultaneous saccharification and fermentation (semi-SSF) model was used.
    CONCLUSIONS: Near-complete saccharification of glucan in LHW-pretreated lignocellulosic substrates could be achieved with the addition of the inexpensive and biocompatible SP additive extracted from DSP. This simple but remarkably effective technique could readily contribute to improving the economics of the cellulosic biorefinery industry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The liquid hot water (LHW) pretreatment could be strengthened by acetic and lactic acids produced from the process. The synergistic effect of the mixed acid catalyst of lactic acid and acetic acid was investigated for the purpose of maximization of the overall C5 sugars yield. Individual acids (acetic and lactic acid) and mixed acid were used to strengthen the LHW pretreatment at different conditions. The results showed that the suitable conditions of mixed acid synergistic catalysis was at 180 °C for 60 min and 3 wt% mixed acid where the ratio of 40% (i.e. 0.40 in mass fraction of lactic acid in mixed acid). Response surface methodology (RSM) was applied to further optimize this process. The highest yield of C5 sugars of 93.83% according to theoretical predicted model, was close to the experiment value of 92.53% at 177 °C for 67 min and with the ratio of mixed acid of 40%.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    UNASSIGNED: Hydrothermal pretreatment using liquid hot water (LHW) is capable of substantially reducing the cell wall recalcitrance of lignocellulosic biomass. It enhances the saccharification of polysaccharides, particularly cellulose, into glucose with relatively low capital required. Due to the close association with biomass recalcitrance, the structural change of the components of lignocellulosic materials during the pretreatment is crucial to understand pretreatment chemistry and advance the bio-economy. Although the LHW pretreatment has been extensively applied and studied, the molecular structural alteration during pretreatment and its significance to reduced recalcitrance have not been well understood.
    UNASSIGNED: We investigated the effects of LHW pretreatment with different severity factors (log R0) on the structural changes of fast-grown poplar (Populus trichocarpa). With the severity factor ranging from 3.6 to 4.2, LHW pretreatment resulted in a substantial xylan solubilization by 50-77% (w/w, dry matter). The molecular weights of the remained hemicellulose in pretreated solids also have been significantly reduced by 63-75% corresponding to LHW severity factor from 3.6 to 4.2. In addition, LHW had a considerable impact on the cellulose structure. The cellulose crystallinity increased 6-9%, whereas its degree of polymerization decreased 35-65% after pretreatment. We found that the pretreatment severity had an empirical linear correlation with the xylan solubilization (R2 = 0.98, r = + 0.99), hemicellulose molecular weight reduction (R2 = 0.97, r = - 0.96 and R2 = 0.93, r = - 0.98 for number-average and weight-average degree of polymerization, respectively), and cellulose crystallinity index increase (R2 = 0.98, r = + 0.99). The LHW pretreatment also resulted in small changes in lignin structure such as decrease of β-O-4\' ether linkages and removal of cinnamyl alcohol end group and acetyl group, while the S/G ratio of lignin in LHW pretreated poplar residue remained no significant change compared with the untreated poplar.
    UNASSIGNED: This study revealed that the solubilization of xylan, the reduction of hemicellulose molecular weights and cellulose degree of polymerization, and the cleavage of alkyl-aryl ether bonds in lignin resulted from LHW pretreatment are critical factors associated with reduced cell wall recalcitrance. The chemical-structural changes of the three major components, cellulose, lignin, and hemicellulose, during LHW pretreatment provide useful and fundamental information of factors governing feedstock recalcitrance during hydrothermal pretreatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    One of the main challenges of second generation (2G) ethanol production is the high quantities of phenolic compounds and furan derivatives generated in the pretreatment of the lignocellulosic biomass, which inhibit the enzymatic hydrolysis and fermentation steps. Fast monitoring of these inhibitory compounds could provide better control of the pretreatment, hydrolysis, and fermentation processes by enabling the implementation of strategic process control actions. We investigated the feasibility of monitoring these inhibitory compounds by ultraviolet-visible (UV-Vis) spectroscopy associated with partial least squares (PLS) regression. Hydroxymethylfurfural, furfural, vanillin, and ferulic and p-coumaric acids generated during different severities of liquid hot water pretreatment of sugarcane bagasse were quantified with highly accuracy. In cross-validation (leave-one-out), the PLS-UV-Vis method presented root mean square error of prediction (RMSECV) of around only 5.0%. The results demonstrated that the monitoring performance achieved with PLS-UV-Vis could support future studies of optimization and control protocols for application in industrial processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号