lipid intrinsic curvature

  • 文章类型: Journal Article
    双层材料属性的扰动(厚度,脂质固有曲率和弹性模量)调节不同膜蛋白构象之间的自由能差异,从而导致跨双层蛋白构象偏好的变化。为了进一步探索曲率和弹性在确定作为通道功能调节基础的双层属性变化中的相对重要性,我们研究了形成胶束的两亲物TritonX-100,减少的TritonX-100和HII脂相启动子辣椒素如何调节阿米霉素和小草菌素通道的功能。两亲物诱导的固有曲率变化是负的还是正的,两亲物的添加增加了小草菌素通道的出现率和寿命,并稳定了alamethicin通道中的较高电导状态。当通过改变磷脂头基相互作用来调节固有曲率时,然而,促进负向曲率的动作稳定了阿米西星通道中的较高电导状态,但不稳定了克霉菌素通道。利用不同长度的小麦草素通道探测双层弹性的变化,我们发现两亲物吸附增加了双层弹性,而改变头组相互作用则没有。我们得出以下结论:第一,证实了以前的研究,阿米霉素和小草菌素通道都受到脂质双层材料特性变化的调节,并行发生但不同的变化取决于被改变的属性;第二,孤立的,曲率的负向变化使阿米他星通道中的较高电流水平稳定,并使他汀通道不稳定;第三,双层弹性的增加稳定了阿米希星通道中更高的电流水平,并稳定了克霉菌素通道;第四,弹性变化的能量后果倾向于主导曲率的变化。
    Perturbations in bilayer material properties (thickness, lipid intrinsic curvature and elastic moduli) modulate the free energy difference between different membrane protein conformations, thereby leading to changes in the conformational preferences of bilayer-spanning proteins. To further explore the relative importance of curvature and elasticity in determining the changes in bilayer properties that underlie the modulation of channel function, we investigated how the micelle-forming amphiphiles Triton X-100, reduced Triton X-100 and the HII lipid phase promoter capsaicin modulate the function of alamethicin and gramicidin channels. Whether the amphiphile-induced changes in intrinsic curvature were negative or positive, amphiphile addition increased gramicidin channel appearance rates and lifetimes and stabilized the higher conductance states in alamethicin channels. When the intrinsic curvature was modulated by altering phospholipid head group interactions, however, maneuvers that promote a negative-going curvature stabilized the higher conductance states in alamethicin channels but destabilized gramicidin channels. Using gramicidin channels of different lengths to probe for changes in bilayer elasticity, we found that amphiphile adsorption increases bilayer elasticity, whereas altering head group interactions does not. We draw the following conclusions: first, confirming previous studies, both alamethicin and gramicidin channels are modulated by changes in lipid bilayer material properties, the changes occurring in parallel yet differing dependent on the property that is being changed; second, isolated, negative-going changes in curvature stabilize the higher current levels in alamethicin channels and destabilize gramicidin channels; third, increases in bilayer elasticity stabilize the higher current levels in alamethicin channels and stabilize gramicidin channels; and fourth, the energetic consequences of changes in elasticity tend to dominate over changes in curvature.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Autophagy is an essential process in cell self-repair and survival. The centre of the autophagic event is the generation of the so-called autophagosome (AP), a vesicle surrounded by a double membrane (two bilayers). The AP delivers its cargo to a lysosome, for degradation and re-use of the hydrolysis products as new building blocks. AP formation is a very complex event, requiring dozens of specific proteins, and involving numerous instances of membrane biogenesis and architecture, including membrane fusion and fission. Many stages of AP generation can be rationalised in terms of curvature, both the molecular geometry of lipids interpreted in terms of \'intrinsic curvature\', and the overall mesoscopic curvature of the whole membrane, as observed with microscopy techniques. The present contribution intends to bring together the worlds of biophysics and cell biology of autophagy, in the hope that the resulting cross-pollination will generate abundant fruit.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Lipid monolayer spontaneous curvatures (or lipid intrinsic curvatures) are one of several material properties of lipids that enable the stored curvature elastic energy in a lipid aggregate to be determined. Stored curvature elastic energy is important since it can modulate the function of membrane proteins and plays a role in the regulatory pathways of phospholipid homeostasis. Due to the large number of different lipid molecules that might theoretically exist in nature, very few lipid spontaneous curvatures have been determined. Herein the values of lipid spontaneous curvatures that exist in the literature are collected, alongside key experimental details. Where possible, trends in the data are discussed and finally, obvious gaps in the knowledge are signposted.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Molecular dynamics simulations of a solvent-free coarse-grained lipid model are used to characterize the mechanisms by which lipid-bilayer hemifusion diaphragm (HD) intermediates relax, across a range of global compositions of negative intrinsic curvature (NIC) lipids and neutral-curvature lipids. At low concentrations of NIC lipids, rapid fission produces a double bilayer end state through a lateral diffusion-based mechanism enabled by spontaneous rim-pore defects. At moderately higher NIC lipid concentrations, rim pores are absent and stable leaflet three-junctions persist, revealing an HD relaxation mechanism entirely reliant on lipid flip-flop, and end states that are either stable fusion pores or stable HD\'s. These fusogenic systems exhibit dynamics highly dependent on NIC lipid concentration via an underlying sensitivity of flip-flop rates for neutral lipids on NIC lipid concentration. This work illustrates that HD dynamics may be altered through regulation of lipid composition in the immediate three-junction region. This work further highlights the potential role of flippases in biological fusion and the importance of lipid composition on fusion dynamics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号