lateral geniculate nucleus

  • 文章类型: Journal Article
    头部方向(HD)神经元,信号面向方向,产生一个主要通过视觉输入锚定到外部世界的信号。我们研究了视觉地标信息进入大鼠HD系统的途径。有两个候选人:一个进化上更老的人,更大的皮质下视网膜-顶通路和最近进化的,较小的皮质retino-geniculo-striate通路。我们通过双侧损伤背侧外侧膝状丘脑核来破坏皮质通路,并记录大鼠在视觉提示控制的围栏中觅食时,在小囊后皮质中的HD细胞。在病变大鼠中,我们发现了预期的下囊后HD细胞数量。尽管方向调谐曲线在整个试验中更宽,这归因于其他正常宽度调谐曲线的不稳定性增加.调谐曲线对偏振视觉标志的反应也很差,并且无法根据其视觉模式来区分线索。因此,retino-geniculo-striate途径对于潜在的,紧密调谐的定向信号,但确实为基于视觉的信号与外界的锚定提供了主要途径,即使视觉线索是高对比度和低细节。关键点:头部方向(HD)单元格表示头部的面对方向,使用视觉地标来区分方向。在老鼠身上,我们调查了这些视觉信息是通过丘脑到达视觉皮层还是通过上丘到达,这是一个系统发育较老和(在啮齿动物)更大的途径。我们在大鼠中损伤了丘脑背侧外侧膝状核(dLGN),并记录了皮质HD细胞对视觉线索的反应性。我们发现皮质HD细胞具有正常的调谐曲线,但这些在试验期间稍不稳定。最值得注意的是,dLGN病变动物中的HD细胞几乎没有区分高度不同线索的能力,也没有区分更相似线索的能力。这些结果表明,哺乳动物视觉标志的定向处理需要膝部-皮质通路,这引发了关于视觉定向地标处理在进化过程中何时以及如何出现的问题。
    Head direction (HD) neurons, signalling facing direction, generate a signal that is primarily anchored to the outside world by visual inputs. We investigated the route for visual landmark information into the HD system in rats. There are two candidates: an evolutionarily older, larger subcortical retino-tectal pathway and a more recently evolved, smaller cortical retino-geniculo-striate pathway. We disrupted the cortical pathway by lesioning the dorsal lateral geniculate thalamic nuclei bilaterally, and recorded HD cells in the postsubicular cortex as rats foraged in a visual-cue-controlled enclosure. In lesioned rats we found the expected number of postsubicular HD cells. Although directional tuning curves were broader across a trial, this was attributable to the increased instability of otherwise normal-width tuning curves. Tuning curves were also poorly responsive to polarizing visual landmarks and did not distinguish cues based on their visual pattern. Thus, the retino-geniculo-striate pathway is not crucial for the generation of an underlying, tightly tuned directional signal but does provide the main route for vision-based anchoring of the signal to the outside world, even when visual cues are high in contrast and low in detail. KEY POINTS: Head direction (HD) cells indicate the facing direction of the head, using visual landmarks to distinguish directions. In rats, we investigated whether this visual information is routed through the thalamus to the visual cortex or arrives via the superior colliculus, which is a phylogenetically older and (in rodents) larger pathway. We lesioned the thalamic dorsal lateral geniculate nucleus (dLGN) in rats and recorded the responsiveness of cortical HD cells to visual cues. We found that cortical HD cells had normal tuning curves, but these were slightly more unstable during a trial. Most notably, HD cells in dLGN-lesioned animals showed little ability to distinguish highly distinct cues and none to distinguish more similar cues. These results suggest that directional processing of visual landmarks in mammals requires the geniculo-cortical pathway, which raises questions about when and how visual directional landmark processing appeared during evolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    视网膜神经节细胞(RGC)轴突提供直接输入到几个细胞核,包括背侧外侧膝状核(dLGN),这对经典的图像形成视觉很重要,和腹侧外侧膝状核(vLGN),这与非图像形成视觉有关。通过活性和形态素依赖机制,视网膜输入在dLGN的发展中起着重要作用,包括视网膜投影的细化,丘脑皮质中继细胞(TRC)的形态发育,皮质神经元神经支配的时机,以及抑制性中间神经元的募集和分布。相比之下,关于视网膜输入在vLGN发展中的作用知之甚少。严重的,vLGN分为两个域,视网膜色素的外部vLGN(vLGNe)和非视网膜色素的内部vLGN(vLGNi)。先前的研究发现,vLGNe由分布在至少四个相邻层中的转录不同的GABA能亚型组成。目前,目前尚不清楚视网膜输入是否会影响vLGNe中这些细胞类型特异性神经元层的发育。这里,我们阐明了小鼠vLGNe中这些层的发育时间表,结果表明这些层是在出生时或出生前指定的。我们观察到,没有视网膜输入的突变小鼠在出生时具有正常的GABA能细胞层状分布;然而,出生后的第一周后,这些突变体在抑制性神经元的层状组织中表现出戏剧性的破坏,并且在vLGNe和vLGNi之间有清晰的边界。总的来说,我们的结果表明,虽然小鼠vLGNe中细胞类型特异性层的形成不依赖于RGC输入,视网膜信号对其维持至关重要。意义陈述本研究调查了视网膜神经节细胞(RGC)轴突在小鼠腹侧外侧膝状核(vLGN)的GABA能细胞发育时间表中的关键作用。虽然视网膜输入对背侧外侧膝状核(dLGN)的经典成像视觉通路的影响是有据可查的,这种输入在非图像形成视觉通路(vLGN)中的意义仍然难以捉摸。研究表明,与GABA能薄层的初始形成相反,这些层的维持主要取决于视网膜信号。这项研究促进了我们对感官途径发展的理解,解开非图像形成视觉中控制神经元组织的关键机制。
    Retinal ganglion cell (RGC) axons provide direct input into several brain regions, including the dorsal lateral geniculate nucleus (dLGN), which is important for image-forming vision, and the ventrolateral geniculate nucleus (vLGN), which is associated with nonimage-forming vision. Through both activity- and morphogen-dependent mechanisms, retinal inputs play important roles in the development of dLGN, including the refinement of retinal projections, morphological development of thalamocortical relay cells (TRCs), timing of corticogeniculate innervation, and recruitment and distribution of inhibitory interneurons. In contrast, little is known about the role of retinal inputs in the development of vLGN. Grossly, vLGN is divided into two domains, the retinorecipient external vLGN (vLGNe) and nonretinorecipient internal vLGN (vLGNi). Studies previously found that vLGNe consists of transcriptionally distinct GABAergic subtypes distributed into at least four adjacent laminae. At present, it remains unclear whether retinal inputs influence the development of these cell-type-specific neuronal laminae in vLGNe. Here, we elucidated the developmental timeline for these laminae in the mouse vLGNe, and results indicate that these laminae are specified at or before birth. We observed that mutant mice without retinal inputs have a normal laminar distribution of GABAergic cells at birth; however, after the first week of postnatal development, these mutants exhibited a dramatic disruption in the laminar organization of inhibitory neurons and clear boundaries between vLGNe and vLGNi. Overall, our results show that while the formation of cell-type-specific layers in mouse vLGNe does not depend on RGC inputs, retinal signals are critical for their maintenance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    发展性阅读障碍(DD)是最常见的学习障碍之一,影响全世界数百万儿童和成人。迄今为止,科学研究试图主要基于大脑皮层的病理生理改变来解释DD。相比之下,几十年前,对五个死后人类大脑的开创性研究表明,DD的核心特征可能是视觉丘脑特定细分的形态改变-大细胞LGN(M-LGN)。然而,由于在人类非侵入性调查LGN细分方面存在相当大的技术挑战,这一发现从未在体内得到证实,其与DD病理学的相关性仍然存在很大争议。这里,我们利用高分辨率磁共振成像(MRI)在高场强(7特斯拉)的最新进展来研究DD体内的M-LGN。使用病例控制设计,我们从患有DD的年轻成年人(n=26;年龄28±7岁;13名女性)和匹配的对照参与者(n=28;年龄27±6岁;15名女性)的大样本中获得了数据.每位参与者完成了全面的诊断行为测试,并参加了两次MRI会议,包括三个功能性MRI实验和一个结构性MRI采集。我们测量了血氧水平依赖性反应和纵向松弛率,以比较两组的LGN细分功能和髓鞘形成。在前人研究的基础上,我们假设M-LGN在DD中发生改变,并且这些改变与关键DD诊断评分相关,即,快速字母和数字命名(RANLN)。结果表明,与对照组相比,DD中M-LGN的异常反应,这反映在群体之间这种细分的不同功能侧化中。这些改变与RANln表现相关,特别是男性DD。我们还发现DD中M-LGN的纵向弛豫率相对于对照的侧向差异。相反,LGN的另一个主要细分,细小细胞LGN(P-LGN),显示两组之间具有可比性的血氧水平依赖性反应和纵向松弛率。本研究首次明确表明M-LGN改变是DD的标志,影响这个细分的功能和微观结构。它进一步提供了M-LGN改变的第一个功能解释,并为更好地了解DD的性别特异性差异提供了基础,并对未来的诊断和治疗策略产生了影响。
    Developmental dyslexia (DD) is one of the most common learning disorders, affecting millions of children and adults worldwide. To date, scientific research has attempted to explain DD primarily based on pathophysiological alterations in the cerebral cortex. In contrast, several decades ago, pioneering research on five post-mortem human brains suggested that a core characteristic of DD might be morphological alterations in a specific subdivision of the visual thalamus - the magnocellular LGN (M-LGN). However, due to considerable technical challenges in investigating LGN subdivisions non-invasively in humans, this finding was never confirmed in-vivo, and its relevance for DD pathology remained highly controversial. Here, we leveraged recent advances in high-resolution magnetic resonance imaging (MRI) at high field strength (7 Tesla) to investigate the M-LGN in DD in-vivo. Using a case-control design, we acquired data from a large sample of young adults with DD (n = 26; age 28 ± 7 years; 13 females) and matched control participants (n = 28; age 27 ± 6 years; 15 females). Each participant completed a comprehensive diagnostic behavioral test battery and participated in two MRI sessions, including three functional MRI experiments and one structural MRI acquisition. We measured blood-oxygen-level-dependent responses and longitudinal relaxation rates to compare both groups on LGN subdivision function and myelination. Based on previous research, we hypothesized that the M-LGN is altered in DD and that these alterations are associated with a key DD diagnostic score, i.e., rapid letter and number naming (RANln). The results showed aberrant responses of the M-LGN in DD compared to controls, which was reflected in a different functional lateralization of this subdivision between groups. These alterations were associated with RANln performance, specifically in male DD. We also found lateralization differences in the longitudinal relaxation rates of the M-LGN in DD relative to controls. Conversely, the other main subdivision of the LGN, the parvocellular LGN (P-LGN), showed comparable blood-oxygen-level-dependent responses and longitudinal relaxation rates between groups. The present study is the first to unequivocally show that M-LGN alterations are a hallmark of DD, affecting both the function and microstructure of this subdivision. It further provides a first functional interpretation of M-LGN alterations and a basis for a better understanding of sex-specific differences in DD with implications for prospective diagnostic and treatment strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Acomyscahirinus是一种独特的啮齿动物,具有几种独特的生理特性,如早熟发展和显著的再生能力。这些特征使得A.chirinus对于再生和发育生理学研究越来越有价值。尽管如此,对A.cahirinus中枢神经系统的结构和出生后发育还没有得到充分的探索,只有零星的数据可用。这项研究是解决这些差距的一系列论文中的第一项。我们的第一个目标是表征主要视觉丘脑区域的结构,外侧膝状复合体,使用几种神经元标记(包括Ca2+结合蛋白,谷氨酸脱羧酶,和重链神经丝的非磷酸化结构域)以标记成虫和新生A.cahirinus中的主要神经元和中间神经元群体。通常在其他啮齿动物中发现,我们在膝状复合体中确定了三个细分:背侧和腹侧外侧膝状核(LGNd和LGNv)和膝间小叶(IGL)。此外,我们表征了LGN核的内部多样性。LGNd的“外壳”和“核心”区域是在成人和新生儿中使用钙视网膜素鉴定的。在成年人中,使用Calbindin识别LGNv的内部和外部,calretinin,parvalbumin,GAD67和SMI-32,而在新生儿中,为此目的使用了calretinin和SMI-32。我们的发现表明,与LGNv和IGL相比,LGNd的发育变化更为明显,这表明LGNd在出生时不太成熟,受视觉体验的影响更大。
    Acomys cahirinus is a unique Rodentia species with several distinctive physiological traits, such as precocial development and remarkable regenerative abilities. These characteristics render A. cahirinus increasingly valuable for regenerative and developmental physiology studies. Despite this, the structure and postnatal development of the central nervous system in A. cahirinus have been inadequately explored, with only sporadic data available. This study is the first in a series of papers addressing these gaps. Our first objective was to characterize the structure of the main visual thalamic region, the lateral geniculate complex, using several neuronal markers (including Ca2+-binding proteins, glutamic acid decarboxylase enzyme, and non-phosphorylated domains of heavy-chain neurofilaments) to label populations of principal neurons and interneurons in adult and newborn A. cahirinus. As typically found in other rodents, we identified three subdivisions in the geniculate complex: the dorsal and ventral lateral geniculate nuclei (LGNd and LGNv) and the intergeniculate leaflet (IGL). Additionally, we characterized internal diversity in the LGN nuclei. The \"shell\" and \"core\" regions of the LGNd were identified using calretinin in adults and newborns. In adults, the inner and outer parts of the LGNv were identified using calbindin, calretinin, parvalbumin, GAD67, and SMI-32, whereas in newborns, calretinin and SMI-32 were employed for this purpose. Our findings revealed more pronounced developmental changes in LGNd compared to LGNv and IGL, suggesting that LGNd is less mature at birth and more influenced by visual experience.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    面部处理是灵长类动物的基础,并且已经在高阶视觉皮层中进行了广泛的研究。这里,我们报告说,猕猴的中脑上丘(SC)的视觉神经元对面部图像表现出偏爱。这种偏好出现在刺激开始的40毫秒内-在视觉皮层的“面部斑块”之前-和,在人口层面,可用于区分人脸和其他视觉对象,准确率为80%。SC中的这种短潜伏期面部偏好取决于通过早期视觉皮层的信号,因为使外侧膝状核失活,从视网膜到皮质的关键中继,实际上消除了SC中的视觉反应,包括面部相关活动。这些结果揭示了灵长类视觉系统中用于快速检测外围面部的意外电路,补充识别个体面部所需的高阶区域。
    Face processing is fundamental to primates and has been extensively studied in higher-order visual cortex. Here, we report that visual neurons in the midbrain superior colliculus (SC) of macaque monkeys display a preference for images of faces. This preference emerges within 40 ms of stimulus onset-well before \"face patches\" in visual cortex-and, at the population level, can be used to distinguish faces from other visual objects with accuracies of ∼80%. This short-latency face preference in SC depends on signals routed through early visual cortex because inactivating the lateral geniculate nucleus, the key relay from retina to cortex, virtually eliminates visual responses in SC, including face-related activity. These results reveal an unexpected circuit in the primate visual system for rapidly detecting faces in the periphery, complementing the higher-order areas needed for recognizing individual faces.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:认为Geniculocalcarine纤维仅同侧。然而,最近的发现挑战了这种信念,揭示了在单侧刺激人类外侧膝状核(LGN)时,枕部-颞顶叶区域的双侧募集反应。这增加了对主要视觉区域(V1)的双侧投影的有趣可能性。这项研究试图探索假想的野猪道的倒流。
    方法:检查了来自HumanConnectome项目的40位健康个体的7TMR图像。采用MRtrix3软件与约束球面反褶积算法,扫描已处理。LGN作为种子区,和对侧感兴趣区域-ROI(call体-SCC,后连合,LGN,V1,pulvinar,和上丘)被定义为重建假设的截流纤维。在所有分割中都包括对侧V1作为目标区域,排除同侧V1以消除通向或源自该区域的纤维。此外,对源自LGN并投射到同侧V1的束进行了分割。从密度图中提取平均分数各向异性和平均扩散率度量。
    结果:观察显示,LGN和对侧V1之间有大量的纤维通过SCC,虽然比同侧纤维小得多。两侧同侧纤维的体积相似。源自左LGN的截流纤维是源自右LGN的纤维的两倍以上。与其他ROI的分割没有产生纤维。
    结论:这项研究表明,LGN和V1之间的纤维部分收缩,可能构成了天南药道。
    BACKGROUND: Geniculocalcarine fibers are thought to be exclusively ipsilateral. However, recent findings challenged this belief, revealing bilateral recruiting responses in occipitotemporoparietal regions upon unilateral stimulation of the lateral geniculate nucleus (LGN) in humans. This raised the intriguing possibility of bilateral projections to primary visual areas (V1). This study sought to explore the hypothetical decussation of the geniculocalcarine tract.
    METHODS: 40 healthy individuals\' 7T magnetic resonance images from the Human Connectome Project were examined. Employing MRtrix3 software with the constrained spherical deconvolution algorithm, scans were processed. LGN served as the seed region and contralateral regions of interest (splenium of the corpus callosum, posterior commissure, LGN, V1, pulvinar, and superior colliculus) were defined to reconstruct the hypothetical decussated fibers. Tractography included contralateral V1 as the target region in all segmentations, excluding ipsilateral V1 to eliminate fibers leading to or originating from this area. Additionally, a segmentation of the tract originating from LGN and projecting to the ipsilateral V1 was performed. Mean fraction anisotropy and mean diffusivity metrics were extracted from the density maps.
    RESULTS: Observations revealed a substantial volume of decussated fibers between LGN and contralateral V1 via the splenium of the corpus callosum, albeit much smaller than ipsilateral fibers. The volume of ipsilateral fibers was similar in both sides. Left LGN-originating decussated fibers were more than double those originating from the right LGN. Tract segmentation to other regions of interests yielded no fibers.
    CONCLUSIONS: This study suggests a partial decussation of the fibers between LGN and V1, likely constituting the geniculocalcarine tract.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    轻度创伤性脑损伤(mTBI)影响美国数百万人,其中约20-30%的人出现持续至少3个月的不良症状。在一项大鼠mTBI研究中,工程旋转加速度(CHIMERA)的闭头撞击模型在视神经束(OT)中产生了明显的轴索损伤,表明白质损伤。因为视网膜神经节细胞通过OT投射到丘脑的外侧膝状核(LGN),我们假设CHIMERA损伤后大鼠LGN的突触密度可能降低。一种改良的SEQUIN(通过成像纳米结构进行突触评估和定量)方法,结合突触前(突触素)和突触后(PSD-95)标记的免疫荧光双重标记,用于量化LGN中的突触密度。使用Iba-1免疫组织化学确定CHIMERA损伤部位的小胶质细胞活化。此外,氯胺酮的影响,一种潜在的神经保护药物,在CHIMERA诱导的mTBI中进行了评估。单次会议重复(ssr-)CHIMERA(3次影响,1.5焦耳/冲击)对损伤部位的小胶质细胞活化产生轻度影响,损伤后静脉输注氯胺酮(10mg/kg)显着增强。然而,ssr-CHIMERA没有改变LGN的突触密度,尽管氯胺酮在损伤后第4天产生了突触密度降低的趋势。需要进一步的研究来表征ssr-CHIMERA和亚麻醉剂量的氯胺酮对损伤后不同脑区和多个时间点的影响。当前的研究证明了ssr-CHIMERA作为mTBI的啮齿动物模型的实用性,研究人员可以利用它来确定mTBI的生物学机制,并为头部创伤患者开发改进的治疗策略。
    Mild traumatic brain injury (mTBI) affects millions of people in the U.S. Approximately 20-30% of those individuals develop adverse symptoms lasting at least 3 months. In a rat mTBI study, the closed-head impact model of engineered rotational acceleration (CHIMERA) produced significant axonal injury in the optic tract (OT), indicating white-matter damage. Because retinal ganglion cells project to the lateral geniculate nucleus (LGN) in the thalamus through the OT, we hypothesized that synaptic density may be reduced in the LGN of rats following CHIMERA injury. A modified SEQUIN (synaptic evaluation and quantification by imaging nanostructure) method, combined with immunofluorescent double-labeling of pre-synaptic (synapsin) and post-synaptic (PSD-95) markers, was used to quantify synaptic density in the LGN. Microglial activation at the CHIMERA injury site was determined using Iba-1 immunohistochemistry. Additionally, the effects of ketamine, a potential neuroprotective drug, were evaluated in CHIMERA-induced mTBI. A single-session repetitive (ssr-) CHIMERA (3 impacts, 1.5 joule/impact) produced mild effects on microglial activation at the injury site, which was significantly enhanced by post-injury intravenous ketamine (10 mg/kg) infusion. However, ssr-CHIMERA did not alter synaptic density in the LGN, although ketamine produced a trend of reduction in synaptic density at post-injury day 4. Further research is necessary to characterize the effects of ssr-CHIMERA and subanesthetic doses of intravenous ketamine on different brain regions and multiple time points post-injury. The current study demonstrates the utility of the ssr-CHIMERA as a rodent model of mTBI, which researchers can use to identify biological mechanisms of mTBI and to develop improved treatment strategies for individuals suffering from head trauma.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    初级视觉皮层(V1)是大脑中研究最多的区域之一,其特征在于其在人类和非人类灵长类动物中的特殊和层压层4。然而,旨在协调啮齿动物和灵长类动物中V1的皮质层和边界的定义的研究非常有限。本文试图识别和协调分子标记和连接模式,这些标记和连接模式可以始终将V1的相应皮质层与哺乳动物物种和年龄的边界联系起来。与啮齿动物V1相比,灵长类动物中的V1具有至少两个额外的独特层(L3b2和L3c)和层4的两个子层(L4a和L4b)。在所有被检查的物种中,V1的4层和3b层从(背侧)外侧膝状核接收强大的输入,V1主要被次级视觉皮层包围,除了V1直接邻接区域的一个位置。也可以使用基因标记在胎龄中期清楚地鉴定灵长类动物V1的边界。在啮齿动物中,确定了V1的一个新的后内侧延伸,它表达V1标记基因并从外侧膝状核接收强大的输入。在文献和脑图册中,该V1扩展被标记为后脾后皮层和内侧次级视觉皮层。啮齿动物和灵长类动物V1的第6层将皮质丘脑投射到外侧膝状,背侧外侧,网状丘脑核和具有地形组织的后部-髓核复合体。最后,直接的膝外(尤其是强烈的膝外)投影可能是V1病变后失明的主要原因。一起来看,与啮齿动物相比,灵长类动物,和人类,V1至少有两个独特的中间层,而其他层在物种之间具有可比性,并且显示出保守的分子标记和与视觉丘脑的相似连接,只有细微的差异。
    The primary visual cortex (V1) is one of the most studied regions of the brain and is characterized by its specialized and laminated layer 4 in human and non-human primates. However, studies aiming to harmonize the definition of the cortical layers and borders of V1 across rodents and primates are very limited. This article attempts to identify and harmonize the molecular markers and connectional patterns that can consistently link corresponding cortical layers of V1 and borders across mammalian species and ages. V1 in primates has at least two additional and unique layers (L3b2 and L3c) and two sublayers of layer 4 (L4a and L4b) compared to rodent V1. In all species examined, layers 4 and 3b of V1 receive strong inputs from the (dorsal) lateral geniculate nucleus, and V1 is mostly surrounded by the secondary visual cortex except for one location where V1 directly abuts area prostriata. The borders of primate V1 can also be clearly identified at mid-gestational ages using gene markers. In rodents, a novel posteromedial extension of V1 is identified, which expresses V1 marker genes and receives strong inputs from the lateral geniculate nucleus. This V1 extension was labeled as the posterior retrosplenial cortex and medial secondary visual cortex in the literature and brain atlases. Layer 6 of the rodent and primate V1 originates corticothalamic projections to the lateral geniculate, lateral dorsal, and reticular thalamic nuclei and the lateroposterior-pulvinar complex with topographic organization. Finally, the direct geniculo-extrastriate (particularly the strong geniculo-prostriata) projections are probably major contributors to blindsight after V1 lesions. Taken together, compared to rodents, primates, and humans, V1 has at least two unique middle layers, while other layers are comparable across species and display conserved molecular markers and similar connections with the visual thalamus with only subtle differences.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    小鼠视网膜包含超过40种不同形态的视网膜神经节细胞(RGCs),函数,或基因表达。RGC的区别还在于它们的轴突是否靶向大脑。同侧或对侧半球。对侧投射RGCs(contralatoryprotingRGCs)广泛存在于小鼠视网膜中,而同侧突出的RGC(ipsiRGC)仅限于视网膜的腹颞叶(VT)新月。在这项研究中,我们采用了Sert-Cre转基因系,据报道,它们选择性地标记ipsiRGC,在发育过程中研究ipsiRGC。尽管Cre表达ipsiRGC的数量并没有随着出生后的年龄而显著增加,他们占据的视网膜区域,到成年时,约占视网膜表面的30%。出乎意料的是,Sert-Cre细胞的遗传消融未能完全破坏同侧投射的视网膜轴突,这表明并非所有的ipsiRGCs都在Sert-Cre小鼠中产生Cre。为了检验这个假设,我们在Sert-Cre小鼠中逆行标记了ipsiRGCs,这表明在Sert-Cre小鼠中并非所有ipsiRGCs都被标记,并且在VT新月侧翼的少量contraRGCs产生了Cre。这些结果并没有否定Sert-Cre小鼠的有用性,但确实对此类研究的解释提出了重要的警告。
    The mouse retina contains over 40 types of retinal ganglion cells (RGCs) that differ in morphology, function, or gene expression. RGCs also differ by whether their axons target the brain.s ipsilateral or contralateral hemisphere. Contralaterally projecting RGCs (contraRGCs) are widespread in mouse retina, whereas ipsilateral projecting RGCs (ipsiRGCs) are confined to the ventro-temporal (VT) crescent of retina. In this study, we employed the Sert-Cre transgenic line, which had been reported to selectively label ipsiRGCs, to study ipsiRGCs during development. Although the number of Cre-expressing ipsiRGCs did not significantly increase with postnatal age, the region of retina that they occupied did, and by adulthood represented ~30% of the retinal surface. Unexpectedly, genetic ablation of Sert-Cre cells failed to fully disrupt ipsilateral projecting retinal axons, suggesting that not all ipsiRGCs generated Cre in Sert-Cre mice. To test this hypothesis, we retrogradely labeled ipsiRGCs in Sert-Cre mice which revealed that not all ipsiRGCs are labeled in Sert-Cre mice and a small population of contraRGCs flanking the VT crescent generates Cre in this line. These results do not negate the usefulness of the Sert-Cre mouse but do raise important caveats to the interpretation of such studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    有人认为,偏头痛先兆(MA)患者的大脑视觉区域可能存在兴奋和抑制过程的失衡。一个想法是丘脑皮质性心律失常,以无序振荡为特征,因此,外侧膝状核和皮质之间的沟通混乱。交叉定向抑制是一种视觉任务,被认为依赖于抑制性处理,可能起源于外侧膝状核。我们使用EEG在MA患者和健康志愿者的枕骨区域测量了静息状态振荡和交叉定向抑制。我们在SSVEP反应中发现了交叉定向抑制的证据,但没有任何群体差异的证据。因此,与交叉定向抑制相关的抑制过程在MA中似乎没有受损。
    It has been suggested that there may be an imbalance of excitation and inhibitory processes in the visual areas of the brain in people with migraine aura (MA). One idea is thalamocortical dysrhythmia, characterized by disordered oscillations, and thus disordered communication between the lateral geniculate nucleus and the cortex. Cross-orientation suppression is a visual task thought to rely on inhibitory processing, possibly originating in the lateral geniculate nucleus. We measured both resting-state oscillations and cross-orientation suppression using EEG over occipital areas in people with MA and healthy volunteers. We found evidence of cross-orientation suppression in the SSVEP responses, but no evidence of any group difference. Therefore, inhibitory processes related to cross-orientation suppression do not appear to be impaired in MA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号