label-free microscopy

无标签显微镜
  • 文章类型: Journal Article
    无标记显微镜技术的出现显着提高了我们精确表征生化目标的能力,实现细胞器和组织组织的非侵入性可视化。然而,了解每种无标签方法的具体好处,缺点,在不同类型的标本的测量条件下,不同的灵敏度仍然是一个挑战。
    我们将所有这些不同的无标记光学相互作用链接在一起,并在统计估计理论的框架内比较检测灵敏度。
    为了实现这一目标,我们引入了一个全面的统一框架,用于评估使用无标签显微镜方法进行信号检测的界限,包括二次谐波的产生,三次谐波产生,相干反斯托克斯拉曼散射,相干斯托克斯拉曼散射,受激拉曼损失,受激拉曼增益,受激发射,脉冲受激拉曼散射,瞬态吸收,和光热效应。建立了由光学散射引起的信号产生的通用模型。
    基于此模型,使用Fisher信息对获得的信息进行定量分析,并通过Cramér-Rao下界评估了估计精度的基本约束,为优化实验设计和解释提供指导。
    我们为寻求将无标签技术用于生物医学研究和临床实践的非侵入性成像应用的研究人员提供了宝贵的见解。
    UNASSIGNED: The emergence of label-free microscopy techniques has significantly improved our ability to precisely characterize biochemical targets, enabling non-invasive visualization of cellular organelles and tissue organization. However, understanding each label-free method with respect to the specific benefits, drawbacks, and varied sensitivities under measurement conditions across different types of specimens remains a challenge.
    UNASSIGNED: We link all of these disparate label-free optical interactions together and compare the detection sensitivity within the framework of statistical estimation theory.
    UNASSIGNED: To achieve this goal, we introduce a comprehensive unified framework for evaluating the bounds for signal detection with label-free microscopy methods, including second-harmonic generation, third-harmonic generation, coherent anti-Stokes Raman scattering, coherent Stokes Raman scattering, stimulated Raman loss, stimulated Raman gain, stimulated emission, impulsive stimulated Raman scattering, transient absorption, and photothermal effect. A general model for signal generation induced by optical scattering is developed.
    UNASSIGNED: Based on this model, the information obtained is quantitatively analyzed using Fisher information, and the fundamental constraints on estimation precision are evaluated through the Cramér-Rao lower bound, offering guidance for optimal experimental design and interpretation.
    UNASSIGNED: We provide valuable insights for researchers seeking to leverage label-free techniques for non-invasive imaging applications for biomedical research and clinical practice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本文阐明了使用光波导生成高对比度和高分辨率无标签图像的物理机制。通过采用高折射率对比度多模波导作为部分相干光源来实现成像。模式提供未标记样品的近场照明,从而将样品的较高空间频率重新定位到远场中。这些模式以不同的相位相干地散射离开样本,并且被设计成在相机的积分时间内具有随机的空间分布。与其他成像技术相比,这减轻了相干斑点噪声并增强了对比度(2-10)X。此外,不同模式的相干散射引起强度波动。这里展示的技术被称为基于芯片的渐逝光散射(cELS)。数学上描述了通过这项工作引入的概念,并解释了使用多模波导作为光源的高对比度图像生成过程。然后,本文探讨了利用捕获图像中的波动以及基于荧光的技术的可行性,像强度波动算法,以减轻相干成像体系中对比度差和衍射受限的分辨率。此外,直波导被证明在其多个模式之间具有有限的角度多样性,因此,对于各向同性样品照明,使用多臂波导几何形状。引入的概念通过对弱散射纳米尺寸标本(如细胞外囊泡(EV))的高对比度无标记成像进行实验验证。脂质体,纳米珠和生物细胞如固定和活的HeLa细胞。
    The article elucidates the physical mechanism behind the generation of superior-contrast and high-resolution label-free images using an optical waveguide. Imaging is realized by employing a high index contrast multi-moded waveguide as a partially coherent light source. The modes provide near-field illumination of unlabeled samples, thereby repositioning the higher spatial frequencies of the sample into the far-field. These modes coherently scatter off the sample with different phases and are engineered to have random spatial distributions within the integration time of the camera. This mitigates the coherent speckle noise and enhances the contrast (2-10) × as opposed to other imaging techniques. Besides, the coherent scattering of the different modes gives rise to fluctuations in intensity. The technique demonstrated here is named chip-based Evanescent Light Scattering (cELS). The concepts introduced through this work are described mathematically and the high-contrast image generation process using a multi-moded waveguide as the light source is explained. The article then explores the feasibility of utilizing fluctuations in the captured images along with fluorescence-based techniques, like intensity-fluctuation algorithms, to mitigate poor-contrast and diffraction-limited resolution in the coherent imaging regime. Furthermore, a straight waveguide is demonstrated to have limited angular diversity between its multiple modes and therefore, for isotropic sample illumination, a multiple-arms waveguide geometry is used. The concepts introduced are validated experimentally via high-contrast label-free imaging of weakly scattering nanosized specimens such as extra-cellular vesicles (EVs), liposomes, nanobeads and biological cells such as fixed and live HeLa cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在上个世纪,荧光显微镜在一系列科学发现中发挥了关键作用。荧光显微镜的成功已经占了上风,尽管有几个缺点,如测量时间,光漂白,时间分辨率,和特定的样品制备。为了绕过这些障碍,已经开发了无标签干涉测量方法。干涉测量法利用激光与生物材料相互作用后的完整波前信息,以产生包含有关结构和活性信息的干涉图案。这里,我们回顾了植物细胞和组织干涉成像的最新研究,使用生物斑点成像等技术,光学相干层析成像,和数字全息。这些方法能够在延长的时间段内定量细胞形态和动态细胞内测量。最近的研究表明,干涉技术具有精确鉴定种子活力和发芽的潜力,植物病害,植物生长和细胞质地,胞内活性和胞质运输。我们设想这些无标签方法的进一步发展,将允许高分辨率,植物及其细胞器的动态成像,范围从亚细胞到组织,从毫秒到数小时。
    During the last century, fluorescence microscopy has played a pivotal role in a range of scientific discoveries. The success of fluorescence microscopy has prevailed despite several shortcomings like measurement time, photobleaching, temporal resolution, and specific sample preparation. To bypass these obstacles, label-free interferometric methods have been developed. Interferometry exploits the full wavefront information of laser light after interaction with biological material to yield interference patterns that contain information about structure and activity. Here, we review recent studies in interferometric imaging of plant cells and tissues, using techniques such as biospeckle imaging, optical coherence tomography, and digital holography. These methods enable quantification of cell morphology and dynamic intracellular measurements over extended periods of time. Recent investigations have showcased the potential of interferometric techniques for precise identification of seed viability and germination, plant diseases, plant growth and cell texture, intracellular activity and cytoplasmic transport. We envision that further developments of these label-free approaches, will allow for high-resolution, dynamic imaging of plants and their organelles, ranging in scales from sub-cellular to tissue and from milliseconds to hours.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    传统的组织病理学依赖于化学染色一个多世纪。染色过程通过繁琐而费力的程序使组织切片对人眼可见,该程序会不可逆转地改变组织,防止样品重复使用。基于深度学习的虚拟染色可以潜在地缓解这些缺点。这里,我们在未染色的组织切片上使用了标准的明场显微镜,并研究了网络容量增加对所得到的几乎染色的H&E图像的影响.使用生成对抗神经网络模型pix2pix作为基线,我们观察到用密集卷积单元代替简单卷积增加了结构相似性得分,峰值信噪比,和原子核复制精度。我们还证明了组织学的高度精确复制,特别是随着网络容量的增加,并证明了对几种组织的适用性。我们证明了网络架构优化可以提高虚拟H&E染色的图像翻译精度,突出虚拟染色在简化组织病理学分析中的潜力。
    Conventional histopathology has relied on chemical staining for over a century. The staining process makes tissue sections visible to the human eye through a tedious and labor-intensive procedure that alters the tissue irreversibly, preventing repeated use of the sample. Deep learning-based virtual staining can potentially alleviate these shortcomings. Here, we used standard brightfield microscopy on unstained tissue sections and studied the impact of increased network capacity on the resulting virtually stained H&E images. Using the generative adversarial neural network model pix2pix as a baseline, we observed that replacing simple convolutions with dense convolution units increased the structural similarity score, peak signal-to-noise ratio, and nuclei reproduction accuracy. We also demonstrated highly accurate reproduction of histology, especially with increased network capacity, and demonstrated applicability to several tissues. We show that network architecture optimization can improve the image translation accuracy of virtual H&E staining, highlighting the potential of virtual staining in streamlining histopathological analysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    苏木精和伊红(H&E)染色,具有百年历史的技术,一直是病理学家检测组织异常和癌症等疾病的黄金标准工具。H&E染色是一个麻烦,耗时的过程,延迟和浪费宝贵的分钟在术中诊断。然而,即使在现代,实时无标签成像技术,如同步无标签自发荧光多谐波(SLAM)显微镜已经提供了更多层的信息,以高精度表征组织。尽管如此,他们还没有去诊所翻译.翻译速度慢可以归因于新旧技术之间缺乏直接比较。我们解决这个问题的方法是:1)通过在500μm切片中预先切片组织来减小尺寸,和2)产生出现在SLAM和组织学成像中的基准激光标记。高峰值功率飞秒激光脉冲能够以受控和包含的方式进行消融。我们在包含感兴趣的SLAM区域的点的网格上执行激光标记。我们优化激光功率,数值孔径,以及产生轴向延伸标记的时间,因此多层基准标记,对周围组织的损伤最小。我们在新切除的小鼠肾脏和肠的3×3mm2面积上进行了这种配准,随后进行标准H&E染色。减少维度和使用激光标记提供了新旧技术的比较,提供了丰富的相关信息,并提高了将非线性显微镜翻译成临床以进行快速病理评估的潜力。
    Hematoxylin and eosin (H&E) staining, the century-old technique, has been the gold standard tool for pathologists to detect anomalies in tissues and diseases such as cancer. H&E staining is a cumbersome, time-consuming process that delays and wastes precious minutes during an intraoperative diagnosis. However, even in the modern era, real-time label-free imaging techniques such as simultaneous label-free autofluorescence multiharmonic (SLAM) microscopy have delivered several more layers of information to characterize a tissue with high precision. Still, they have yet to translate to the clinic. The slow translation rate can be attributed to the lack of direct comparisons between the old and new techniques. Our approach to solving this problem is to: 1) reduce dimensions by pre-sectioning the tissue in 500 μm slices, and 2) produce fiducial laser markings which appear in both SLAM and histological imaging. High peak-power femtosecond laser pulses enable ablation in a controlled and contained manner. We perform laser marking on a grid of points encompassing the SLAM region of interest. We optimize laser power, numerical aperture, and timing to produce axially extended marking, hence multilayered fiducial markers, with minimal damage to the surrounding tissues. We performed this co-registration over an area of 3 × 3 mm2 of freshly excised mouse kidney and intestine, followed by standard H&E staining. Reduced dimensionality and the use of laser markings provided a comparison of the old and new techniques, giving a wealth of correlative information and elevating the potential of translating nonlinear microscopy to the clinic for rapid pathological assessment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    显微镜对于阐明空间和时间中的微观和纳米尺度过程至关重要,并提供了对细胞和生物功能的见解。它广泛应用于细胞生物学,微生物学,生理学,临床科学和病毒学。而标签依赖显微镜,如荧光显微镜,提供分子特异性,它仍然很难在活样本中多重化。相比之下,无标签显微镜在最小扰动下报告样本的整体特征。这里,我们讨论了分子无标记成像的模式,细胞和组织水平,包括透射光显微镜,定量相位成像,低温电子显微镜或层析成像,和原子力显微镜。我们重点介绍了如何使用无标签显微镜来探测病毒的结构组织和机械性能,包括病毒颗粒和受感染的细胞在广泛的空间尺度。我们讨论了成像程序和分析的工作原理,并展示他们如何在病毒学中开辟新的途径。最后,我们讨论增强和补充无标记显微镜技术的正交方法。迷你抽象无标签成像提供了前所未有的洞察病毒在宏观,分子和原子水平。我们介绍了主要的无标记成像技术,并讨论了它们如何用于病毒颗粒和感染细胞。无标签显微镜的力量有望增强对传染病和治疗剂未知方面的发现。
    Microscopy has been essential to elucidate micro- and nano-scale processes in space and time and has provided insights into cell and organismic functions. It is widely employed in cell biology, microbiology, physiology, clinical sciences and virology. While label-dependent microscopy, such as fluorescence microscopy, provides molecular specificity, it has remained difficult to multiplex in live samples. In contrast, label-free microscopy reports on overall features of the specimen at minimal perturbation. Here, we discuss modalities of label-free imaging at the molecular, cellular and tissue levels, including transmitted light microscopy, quantitative phase imaging, cryogenic electron microscopy or tomography and atomic force microscopy. We highlight how label-free microscopy is used to probe the structural organization and mechanical properties of viruses, including virus particles and infected cells across a wide range of spatial scales. We discuss the working principles of imaging procedures and analyses and showcase how they open new avenues in virology. Finally, we discuss orthogonal approaches that enhance and complement label-free microscopy techniques.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在偏远的难以到达的地区,缺乏配备齐全的医疗基础设施,使他们的人口面临更高的常见疾病并发症风险。及时的诊断会改变生活,全世界都在努力开发具有成本效益的设备的即时测试(PoCT)。PoCT最常见的兴趣之一是血液涂片样本的分析,因为它们可以帮助检测,诊断,并监测各种疾病和紊乱。显微镜是这些分析的传统工具,一个重要的进步是开发具有成本效益的数字全息显微系统,部分是由其无标签成像功能驱动的,该功能免除了对任何样品预处理的需要。这里,一个强大的便携式数字无透镜全息显微镜,功能化,用于在PoCT环境中分析未经预处理的血液涂片样品,被呈现,并在红细胞的观察中测试其生存能力。该设备使用锥形尖端的光纤,而不是针孔,这确保了系统的坚固性,消除了具有挑战性的对齐的需要。虽然显微镜的距离可以在制造前调整,本文报告的操作参数被功能化以用于血液样品的特定分析。
    The lack of equipped healthcare infrastructure in isolated hard-to-reach zones exposes their population to a higher risk of complications in common diseases. With a timely diagnosis setting a life-altering difference, worldwide efforts have been conducted for the development of point-of-care testing (PoCT) with cost-effective devices. Among the most common interests in PoCT is the analysis of blood smear samples, as they can help to detect, diagnose, and monitor a wide range of diseases and disorders. With microscopy being the traditional tool for these analyses, a significative advance has been the development of cost-effective digital holographic microscopy systems, driven in part by its label-free imaging capabilities that waive the need for any sample preprocessing. Here, a robust and portable digital lensless holographic microscope, functionalized for the analysis of non-preprocessed blood smear samples in PoCT environments, is presented, and its viability is tested in the observation of red blood cells. The device uses an optical fiber with a cone-shaped tip instead of a pinhole, which ensures the sturdiness of the system and eliminates the need for challenging alignment. While the distances of the microscope can be tuned before fabrication, the herein-reported operational parameters are functionalized for the specific analysis of blood samples.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生物学研究不断需要新的方法学发展,以评估从整个生物体到蛋白质之间相互作用的各种规模的组织和功能。证据和量化生物现象的主要方法之一是成像。荧光显微镜和无标签显微镜特别是高度活跃的研究领域,由于它们与活体样品的兼容性以及它们的多功能性。伊马比奥青年科学家网络(YSN)是一群年轻的科学家(博士生,博士后和工程师)对生物成像感到兴奋,并旨在创建具有相同兴趣的主动研究人员网络。YSN得到了法国生物成像网络GDRImabio的认可,该计划于2019年启动。从那以后,我们的目标是每年组织ImabioYSN会议,将网络扩展到其他欧洲国家,建立新的合作,激发新的科学思想。从2022年7月6日至8日,YSN包括生命科学领域的研究人员,化学,物理和计算科学在里昂举行的第三届ImabioYSN会议2022上举行,讨论最新的生物成像技术和生物学发现。在本次会议审查中,我们描述了科学辩论的本质,突出引人注目的会谈,专注于职业发展会议,这是YSN会议独有的,为年轻科学家提供职业视角,并帮助回答他们在这个职业阶段的所有问题。这次会议是科学家们真正的跨学科聚会,他们渴望推动生物成像的前沿,以了解生物系统的复杂性。
    Biological research is in constant need of new methodological developments to assess organization and functions at various scales ranging from whole organisms to interactions between proteins. One of the main ways to evidence and quantify biological phenomena is imaging. Fluorescence microscopy and label-free microscopy are in particular highly active fields of research due to their compatibility with living samples as well as their versatility. The Imabio Young Scientists Network (YSN) is a group of young scientists (PhD students, postdocs and engineers) who are excited about bioimaging and aim to create a proactive network of researchers with the same interest. YSN is endorsed by the bioimaging network GDR Imabio in France, where the initiative was started in 2019. Since then, we aim to organize the Imabio YSN conference every year to expand the network to other European countries, establish new collaborations and ignite new scientific ideas. From 6-8 July 2022, the YSN including researchers from the domains of life sciences, chemistry, physics and computational sciences met at the Third Imabio YSN Conference 2022 in Lyon to discuss the latest bioimaging technologies and biological discoveries. In this Meeting Review, we describe the essence of the scientific debates, highlight remarkable talks, and focus on the Career Development session, which is unique to the YSN conference, providing a career perspective to young scientists and help to answer all their questions at this career stage. This conference was a truly interdisciplinary reunion of scientists who are eager to push the frontiers of bioimaging in order to understand the complexity of biological systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Published Erratum
    [这更正了文章DOI:10.3389/fcell.2021.675636。].
    [This corrects the article DOI: 10.3389/fcell.2021.675636.].
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    癌细胞通常适应其脂质代谢以适应对膜生物发生和能量产生的增加的脂肪酸需求。从癌细胞环境中摄取脂肪酸的上调也已被报道为替代机制。探讨脂质在肿瘤发病和进展中的作用,并确定潜在的诊断生物标志物。理想情况下,脂质以无标记的方式直接在完整的肿瘤组织内成像。在这项研究中,我们通过相干抗斯托克斯拉曼散射显微镜研究了正在发展肿瘤的斑马鱼幼虫中的脂质积累和分布。基于放射组学的定量质地特征显示,与健康幼虫相比,表达癌基因的幼虫中的脂质积累更高。这种高脂质积累可能反映了过度增殖的癌基因表达细胞中脂质代谢的改变。
    Cancer cells often adapt their lipid metabolism to accommodate the increased fatty acid demand for membrane biogenesis and energy production. Upregulation of fatty acid uptake from the environment of cancer cells has also been reported as an alternative mechanism. To investigate the role of lipids in tumor onset and progression and to identify potential diagnostic biomarkers, lipids are ideally imaged directly within the intact tumor tissue in a label-free way. In this study, we investigated lipid accumulation and distribution in living zebrafish larvae developing a tumor by means of coherent anti-Stokes Raman scattering microscopy. Quantitative textural features based on radiomics revealed higher lipid accumulation in oncogene-expressing larvae compared to healthy ones. This high lipid accumulation could reflect an altered lipid metabolism in the hyperproliferating oncogene-expressing cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号