kinetochore

Kinetochore
  • 文章类型: Journal Article
    与体细胞有丝分裂和种系减数分裂相关的染色体分离和细胞分裂程序显示出巨大的差异,例如动粒取向,去除cohesin,或存在间隙阶段。1,2,3,4,5,6染色体分离的这些变化需要改变已建立的细胞分裂机制。5,6尚不清楚有丝分裂和减数分裂细胞分裂之间动粒功能及其调节控制的哪些方面不同,以重新连接这些核心过程。选择性RNA剪接可以产生不同的蛋白质同种型,以允许跨细胞类型的细胞过程的差异控制。然而,差异调节不同细胞分裂程序的选择性剪接亚型仍然难以捉摸。这里,我们证明了哺乳动物生殖细胞表达动粒成分的替代性mRNA剪接同工型,DSN1,MIS12复合物的一个亚基,在染色体分离过程中连接着丝粒和纺锤体微管。这种种系DSN1同种型绕过了Aurora激酶磷酸化对其着丝粒定位的要求,因为没有关键的调节区允许DSN1显示出持续的着丝粒定位。种系DSN1同种型在体细胞中的表达导致组成型动粒定位,染色体分离错误,和生长缺陷,为其紧密的细胞类型特异性表达提供了解释。相互,在小鼠模型中精确消除种系特异性DSN1剪接同工型的表达会破坏卵母细胞成熟和早期胚胎分裂,并降低生育力。一起,这项工作确定了染色体分离成分的种系特异性剪接同工型,并暗示了其在哺乳动物生育力中的作用。
    The chromosome segregation and cell division programs associated with somatic mitosis and germline meiosis display dramatic differences such as kinetochore orientation, cohesin removal, or the presence of a gap phase.1,2,3,4,5,6 These changes in chromosome segregation require alterations to the established cell division machinery.5,6 It remains unclear what aspects of kinetochore function and its regulatory control differ between the mitotic and meiotic cell divisions to rewire these core processes. Alternative RNA splicing can generate distinct protein isoforms to allow for the differential control of cell processes across cell types. However, alternative splice isoforms that differentially modulate distinct cell division programs have remained elusive. Here, we demonstrate that mammalian germ cells express an alternative mRNA splice isoform for the kinetochore component, DSN1, a subunit of the MIS12 complex that links the centromeres to spindle microtubules during chromosome segregation. This germline DSN1 isoform bypasses the requirement for Aurora kinase phosphorylation for its centromere localization due to the absence of a key regulatory region allowing DSN1 to display persistent centromere localization. Expression of the germline DSN1 isoform in somatic cells results in constitutive kinetochore localization, chromosome segregation errors, and growth defects, providing an explanation for its tight cell-type-specific expression. Reciprocally, precisely eliminating expression of the germline-specific DSN1 splice isoform in mouse models disrupts oocyte maturation and early embryonic divisions coupled with a reduction in fertility. Together, this work identifies a germline-specific splice isoform for a chromosome segregation component and implicates its role in mammalian fertility.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The localization of the meiotic specific regulatory molecule Moa1 to the centromere is regulated by the kinetochore protein CENP-C, and participates in the cohesion of sister chromatids in the centromere region mediated by the cohesin Rec8. To examine the interaction of these proteins, we analyzed the interactions between Moa1 and Rec8, CENP-C by yeast two-hybrid assays and identified several amino acid residues in Moa1 required for the interaction with CENP-C and Rec8. The results revealed that the interaction between Moa1 and CENP-C is crucial for the Moa1 to participate in the regulation of monopolar attachment of sister kinetochores. However, mutation at S143 and T150 of Moa1, which are required for interaction with Rec8 in the two-hybrid assay, did not show significant defects. Mutations in amino acid residues may not be sufficient to interfere with the interaction between Moa1 and Rec8 in vivo. Further research is needed to determine the interaction domain between Moa1 and Rec8. This study revealed specific amino acid sites at which Moa1 affects the meiotic homologous chromosome segregation, providing a deeper understanding of the mechanism of meiotic chromosome segregation.
    减数分裂特异性调控分子Moa1定位到着丝粒受到动粒蛋白CENP-C的调控,同时Moa1参与黏连蛋白Rec8介导的着丝粒区域姐妹染色单体的黏连。为了研究这些蛋白质之间的相互作用,本研究利用酵母双杂交实验(yeast two-hybrid assay)测定分析了Moa1和CENP-C、Rec8之间的相互作用,并通过在Moa1中定点突变鉴定了与CENP-C和Rec8相互作用所需的一些氨基酸残基。实验结果表明,Moa1和CENP-C的相互作用对于Moa1参与调节姐妹动粒的单极附着很重要。然而,双杂交实验中与Rec8相互作用所需的Moa1的S143和T150突变没有显示出Moa1或Rec8功能的显著缺陷。这表明氨基酸残基的突变可能不足以干扰体内Moa1和Rec8之间的相互作用,需要进一步的研究来确定Moa1和Rec8的相互作用域。本研究揭示了影响减数分裂同源染色体分离的Moa1氨基酸位点,为减数分裂的染色体分离机制提供更深入的理解。.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    真核染色体分离需要动子,在染色体着丝粒上组装并介导附着到动态纺锤体微管的多兆道尔顿蛋白质机器。Kinetochores是由许多复合体建造的,重组子组件的结构研究也取得了进展。然而,关于原生动体体系结构的结构信息有限。为了解决这个问题,我们纯化了功能,来自嗜热酵母马氏克鲁维酵母的天然动体,并通过电子显微镜(EM)对其进行了检查,低温电子断层显像(cryo-ET),和原子力显微镜(AFM)。动静脉非常大,具有与现有模型一致的特征的柔性组件。我们通过可视化它们与微管的相互作用并定位微管粘合剂来分配动粒极性,Ndc80c.这项工作表明,孤立的动车组比基于重组子组件的已知结构所预期的动态和复杂,并为在结构水平上研究动车组的整体结构和功能奠定了基础。
    Eukaryotic chromosome segregation requires kinetochores, multi-megadalton protein machines that assemble on the centromeres of chromosomes and mediate attachments to dynamic spindle microtubules. Kinetochores are built from numerous complexes, and there has been progress in structural studies on recombinant subassemblies. However, there is limited structural information on native kinetochore architecture. To address this, we purified functional, native kinetochores from the thermophilic yeast Kluyveromyces marxianus and examined them by electron microscopy (EM), cryoelectron tomography (cryo-ET), and atomic force microscopy (AFM). The kinetochores are extremely large, flexible assemblies that exhibit features consistent with prior models. We assigned kinetochore polarity by visualizing their interactions with microtubules and locating the microtubule binder, Ndc80c. This work shows that isolated kinetochores are more dynamic and complex than what might be anticipated based on the known structures of recombinant subassemblies and provides the foundation to study the global architecture and functions of kinetochores at a structural level.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    真菌病原体如白念珠菌对人类健康构成重大威胁,可用的治疗选择有限。扩大治疗靶标空间的一种策略是鉴定对于宿主相关环境中的病原体生长重要的基因。这里,我们利用汇集的功能性基因组筛选策略来鉴定在不同条件下对白色念珠菌适应性重要的基因.我们确定了一个没有已知酿酒酵母同源物的必需基因,C1_09670C,并证明它编码复制因子A(Rfa3)的亚基3。此外,我们应用计算分析来识别功能一致的基因簇和预测基因功能。通过这种方法,我们预测C3_06880W的细胞周期相关功能,一个以前未表征的基因,特别是在高温下的健康所需的基因,和后续测定证实C3_06880W编码Iml3,一种在体内毒力中起作用的白色念珠菌动粒的组分。总的来说,这项工作揭示了对白色念珠菌脆弱性的见解。
    Fungal pathogens such as Candida albicans pose a significant threat to human health with limited treatment options available. One strategy to expand the therapeutic target space is to identify genes important for pathogen growth in host-relevant environments. Here, we leverage a pooled functional genomic screening strategy to identify genes important for fitness of C. albicans in diverse conditions. We identify an essential gene with no known Saccharomyces cerevisiae homolog, C1_09670C, and demonstrate that it encodes subunit 3 of replication factor A (Rfa3). Furthermore, we apply computational analyses to identify functionally coherent gene clusters and predict gene function. Through this approach, we predict the cell-cycle-associated function of C3_06880W, a previously uncharacterized gene required for fitness specifically at elevated temperatures, and follow-up assays confirm that C3_06880W encodes Iml3, a component of the C. albicans kinetochore with roles in virulence in vivo. Overall, this work reveals insights into the vulnerabilities of C. albicans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    全基因组复制(WGD)发生在所有王国,并影响物种形成,驯化,和癌症的结果。然而,双倍的DNA管理对于新生多倍体可能是具有挑战性的。物种内多倍体(自多倍体)的研究允许将重点放在DNA管理方面,将其与杂交的混杂效应(在异源多倍体杂种中)分离。自体多倍体是如何耐受的,年轻的多倍体是如何稳定的?这里,我们引入了一个强大的模型来解决这个问题:耳蜗属,经历了许多多倍体化事件。我们评估减数分裂和其他多倍体相关表型,产生一个染色体尺度的基因组,并对来自33倍性对比种群的113个个体进行测序。我们在动子组件和离子转运蛋白处检测到明显的与多倍体相关的选择信号。对选定的等位基因进行建模,我们详细说明了动粒复合物介导多倍体适应的证据。我们比较了相隔4000万年的三个属的独立自身多倍体中的候选者,突出了过程和基因水平的共同功能,表明响应多倍体的进化灵活性。
    Whole-genome duplication (WGD) occurs in all kingdoms and impacts speciation, domestication, and cancer outcome. However, doubled DNA management can be challenging for nascent polyploids. The study of within-species polyploidy (autopolyploidy) permits focus on this DNA management aspect, decoupling it from the confounding effects of hybridization (in allopolyploid hybrids). How is autopolyploidy tolerated, and how do young polyploids stabilize? Here, we introduce a powerful model to address this: the genus Cochlearia, which has experienced many polyploidization events. We assess meiosis and other polyploid-relevant phenotypes, generate a chromosome-scale genome, and sequence 113 individuals from 33 ploidy-contrasting populations. We detect an obvious autopolyploidy-associated selection signal at kinetochore components and ion transporters. Modeling the selected alleles, we detail evidence of the kinetochore complex mediating adaptation to polyploidy. We compare candidates in independent autopolyploids across three genera separated by 40 million years, highlighting a common function at the process and gene levels, indicating evolutionary flexibility in response to polyploidy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    配子是通过减数分裂产生的,与导致出生缺陷和不育的频繁错误相关的特殊细胞分裂。特别是在减数分裂I中,同源染色体分离到相反的两极,通常需要chiasmata将它们联系起来,1纺锤体检查点延迟细胞周期进程,直到所有染色体正确连接到微管,2,但导致减数分裂I纺锤体上染色体捕获和对齐的步骤仍然知之甚少。在出芽酵母减数分裂I中,Mad2和Mad3BUBR1对于主轴检查点延迟同样重要,但是减数分裂I纺锤体上同源物的双向定位需要Mad2,而不是Mad3BUBR1.3,4。在这里,我们揭示了Mad2和Mad3BUBR1在减数分裂I染色体分离中的不同功能。Mad2促进前期到中期I的过渡,而Mad3BUBR1与Stu1CLASP的TOGL1域相关联,一种保守的正端微管蛋白,对染色体捕获到纺锤体上很重要。精通交叉形成但无法进行生物定向的同源染色体对依靠Mad3BUBR1-Stu1CLASP来确保它们在减数分裂过程中有效附着于微管和分离I。此外,我们表明,Mad3BUBR1-Stu1CLASP对于挽救缺乏交换的微型染色体的分离至关重要。我们的发现定义了一种确保微管依赖性染色体捕获的新途径,并证明纺锤体检查点蛋白通过积极促进染色体排列和延迟细胞周期进程直到发生这种情况来保护染色体分离的保真度。
    Gametes are produced via meiosis, a specialized cell division associated with frequent errors that cause birth defects and infertility. Uniquely in meiosis I, homologous chromosomes segregate to opposite poles, usually requiring their linkage by chiasmata, the products of crossover recombination.1 The spindle checkpoint delays cell-cycle progression until all chromosomes are properly attached to microtubules,2 but the steps leading to the capture and alignment of chromosomes on the meiosis I spindle remain poorly understood. In budding yeast meiosis I, Mad2 and Mad3BUBR1 are equally important for spindle checkpoint delay, but biorientation of homologs on the meiosis I spindle requires Mad2, but not Mad3BUBR1.3,4 Here we reveal the distinct functions of Mad2 and Mad3BUBR1 in meiosis I chromosome segregation. Mad2 promotes the prophase to metaphase I transition, while Mad3BUBR1 associates with the TOGL1 domain of Stu1CLASP, a conserved plus-end microtubule protein that is important for chromosome capture onto the spindle. Homologous chromosome pairs that are proficient in crossover formation but fail to biorient rely on Mad3BUBR1-Stu1CLASP to ensure their efficient attachment to microtubules and segregation during meiosis I. Furthermore, we show that Mad3BUBR1-Stu1CLASP are essential to rescue the segregation of mini-chromosomes lacking crossovers. Our findings define a new pathway ensuring microtubule-dependent chromosome capture and demonstrate that spindle checkpoint proteins safeguard the fidelity of chromosome segregation both by actively promoting chromosome alignment and by delaying cell-cycle progression until this has occurred.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    着丝粒故障引起的染色体分离错误可导致染色体不稳定和非整倍性。在秀丽隐杆线虫中,Argonaute蛋白CSR-1对于正确的染色体分离至关重要,尽管具体机制还没有完全理解。在这里,我们研究了CSR-1如何调节C.elegans胚胎中的着丝粒和动粒功能。我们发现CSR-1的耗竭导致有丝分裂进程和染色体相对于纺锤体极点的定位缺陷。CSR-1敲低不影响着丝粒组蛋白H3变体CENP-A/HCP-3mRNA和蛋白质水平,但增加了HCP-3和一些动粒蛋白在有丝分裂染色体上的定位。染色质HCP-3定位的这种升高取决于CSR-1RNAi途径上游因子EGO-1和CSR-1的PIWI结构域活性。我们的结果表明,CSR-1限制HCP-3水平在全细胞,防止错误的动粒组装,从而促进准确的染色体分离。我们的工作揭示了CSR-1在调节HCP-3在染色质和着丝粒功能上的作用。
    Chromosome segregation errors caused by centromere malfunction can lead to chromosome instability and aneuploidy. In Caenorhabditis elegans, the Argonaute protein CSR-1 is essential for proper chromosome segregation, though the specific mechanisms are not fully understood. Here we investigated how CSR-1 regulates centromere and kinetochore function in C. elegans embryos. We found that the depletion of CSR-1 results in defects in mitotic progression and chromosome positioning relative to the spindle pole. CSR-1 knockdown does not affect centromeric histone H3 variant CENP-A/HCP-3 mRNA and protein levels, but increases the localization of HCP-3 and some kinetochore proteins onto the mitotic chromosomes. Such elevation of chromatin HCP-3 localization depends on the CSR-1 RNAi pathway upstream factor EGO-1 and CSR-1\'s PIWI domain activity. Our results suggest that CSR-1 restricts HCP-3 level at the holocentromeres, prevents erroneous kinetochore assembly, and thereby promotes accurate chromosome segregation. Our work sheds light on CSR-1\'s role in regulating deposition of HCP-3 on chromatin and centromere function in the embryos.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纺锤体组装检查点(SAC)通过操纵有丝分裂检查点复合物(MCC)的独立的动粒依赖性组装来确保染色体分离的保真度。MCC结合并抑制后期促进复合物/环体(APC/C)以推迟有丝分裂退出。然而,尚未完全了解未连接的动子介导MCC形成的机制。这里,表明CCDC68是一种外动子蛋白,优先定位于未连接的动子。此外,CCDC68与SAC因子CDC20相互作用以抑制其自动尿素化和MCC分解。因此,CCDC68抑制APC/C激活,以确保强大的SAC并留出足够的时间进行染色体比对,从而确保染色体的稳定性。因此,研究表明,CCDC68是CDC20依赖性MCC稳定维持有丝分裂检查点激活所必需的.
    The spindle assembly checkpoint (SAC) ensures chromosome segregation fidelity by manipulating unattached kinetochore-dependent assembly of the mitotic checkpoint complex (MCC). The MCC binds to and inhibits the anaphase promoting complex/cyclosome (APC/C) to postpone mitotic exit. However, the mechanism by which unattached kinetochores mediate MCC formation is not yet fully understood. Here, it is shown that CCDC68 is an outer kinetochore protein that preferentially localizes to unattached kinetochores. Furthermore, CCDC68 interacts with the SAC factor CDC20 to inhibit its autoubiquitination and MCC disassembly. Therefore, CCDC68 restrains APC/C activation to ensure a robust SAC and allow sufficient time for chromosome alignment, thus ensuring chromosomal stability. Hence, the study reveals that CCDC68 is required for CDC20-dependent MCC stabilization to maintain mitotic checkpoint activation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质的14-3-3家族在真核生物中是保守的,并且具有细胞的无数重要调节功能。这些蛋白质同源物的同源/异二聚体,主要通过保守基序识别它们的配体,以调节这些效应子配体的定位和功能。在酿酒酵母的大多数遗传背景中,14-3-3同源物(Bmh1和Bmh2)的破坏要么致命,要么具有严重的生长缺陷,显示出严重的染色体误分离和延长的细胞周期停滞。为了阐明它们对染色体分离的贡献,在这项工作中,我们研究了它们与着丝粒/动粒相关的功能。对适当的缺失突变体的分析表明,Bmh同种型在维持动粒集合的适当完整性方面具有累积和未共享的同种型特异性贡献。因此,bmh突变细胞在动粒-微管(KT-MT)动力学中表现出扰动,其特征是动粒去细胞,动粒蛋白的错误定位,和Mad2介导的短暂G2/M阻滞。这些缺陷还导致中期bmh突变体的异步染色体拥塞。总之,本报告通过证明出芽酵母14-3-3蛋白在动粒完整性和染色体拥挤中的作用,提高了对染色体分离的贡献的认识。
    The 14-3-3 family of proteins are conserved across eukaryotes and serve myriad important regulatory functions in the cell. Homo- and hetero-dimers of these proteins mainly recognize their ligands via conserved motifs to modulate the localization and functions of those effector ligands. In most of the genetic backgrounds of Saccharomyces cerevisiae, disruption of both 14-3-3 homologs (Bmh1 and Bmh2) are either lethal or cells survive with severe growth defects, including gross chromosomal missegregation and prolonged cell cycle arrest. To elucidate their contributions to chromosome segregation, in this work, we investigated their centromere- and kinetochore-related functions of Bmh1 and Bmh2. Analysis of appropriate deletion mutants shows that Bmh isoforms have cumulative and non-shared isoform-specific contributions in maintaining the proper integrity of the kinetochore ensemble. Consequently, Bmh mutant cells exhibited perturbations in kinetochore-microtubule (KT-MT) dynamics, characterized by kinetochore declustering, mis-localization of kinetochore proteins and Mad2-mediated transient G2/M arrest. These defects also caused an asynchronous chromosome congression in bmh mutants during metaphase. In summary, this report advances the knowledge on contributions of budding yeast 14-3-3 proteins in chromosome segregation by demonstrating their roles in kinetochore integrity and chromosome congression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    遗传物质的忠实传播对所有生物体的生存至关重要。在许多真核生物中,一种称为纺锤体检查点的反馈控制机制,通过延迟细胞周期进程,直到所有染色体与有丝分裂纺锤体正确连接,确保染色体分离的保真度。Kinetochores是大分子复合物,充当染色体和纺锤体微管之间的界面。虽然大多数真核生物具有广泛保守的经典动粒蛋白,运动质体如布氏锥虫具有一组看似独特的运动体蛋白,包括KKT1-25。尚不清楚动体如何调节细胞周期进程或确保染色体分离保真度。这里,我们报道了来自螺旋状无节虫的KKT14C末端结构域的晶体结构,并揭示了它是一种假激酶。其结构与纺锤体检查点蛋白Bub1的激酶结构域最相似。此外,KKT14具有假定的ABBA基序,该基序存在于Bub1及其旁系物BubR1中。我们还发现KKT14的N端部分与KKT15相互作用,KKT15的WD40重复β-螺旋桨在系统发育上与Bub1/BubR1的直接相互作用者Bub3密切相关。我们的发现表明,KKT14-KKT15是Bub1/BubR1-Bub3的不同直向同源物,可促进锥虫中准确的染色体分离。
    Faithful transmission of genetic material is crucial for the survival of all organisms. In many eukaryotes, a feedback control mechanism called the spindle checkpoint ensures chromosome segregation fidelity by delaying cell cycle progression until all chromosomes achieve proper attachment to the mitotic spindle. Kinetochores are the macromolecular complexes that act as the interface between chromosomes and spindle microtubules. While most eukaryotes have canonical kinetochore proteins that are widely conserved, kinetoplastids such as Trypanosoma brucei have a seemingly unique set of kinetochore proteins including KKT1-25. It remains poorly understood how kinetoplastids regulate cell cycle progression or ensure chromosome segregation fidelity. Here, we report a crystal structure of the C-terminal domain of KKT14 from Apiculatamorpha spiralis and uncover that it is a pseudokinase. Its structure is most similar to the kinase domain of a spindle checkpoint protein Bub1. In addition, KKT14 has a putative ABBA motif that is present in Bub1 and its paralogue BubR1. We also find that the N-terminal part of KKT14 interacts with KKT15, whose WD40 repeat beta-propeller is phylogenetically closely related to a direct interactor of Bub1/BubR1 called Bub3. Our findings indicate that KKT14-KKT15 are divergent orthologues of Bub1/BubR1-Bub3, which promote accurate chromosome segregation in trypanosomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号