isp-1

isp - 1
  • 文章类型: Preprint
    在成熟过程中,卵母细胞在果蝇中经历了最近发现的线粒体蛋白质组重塑事件1,青蛙1,人类2。这种卵母细胞线粒体重塑,其中包括电子传递链(ETC)亚基丰度的实质性变化1,2,受母体胰岛素信号1调节。为什么卵母细胞经历线粒体重塑是未知的,有人推测,保护卵母细胞免受活性氧(ROS)2的遗传毒性损伤可能是一种进化上保守的机制。在秀丽隐杆线虫中,我们之前发现,母体暴露于渗透应激会导致后代存活率增加50倍,以应对未来的渗透应激3。像线粒体重塑一样,我们发现,这种代际适应也受到胰岛素信号对卵母细胞3的调节。这里,我们使用蛋白质组学和基因操作表明,通过依赖于母体卵母细胞中ETC组成的机制,向卵母细胞传递胰岛素信号调节后代适应未来应激的能力。具体来说,我们发现,母本表达的nduf-7(复杂的I亚基)或isp-1(复杂的III亚基)突变等位基因改变了后代在孵化时对渗透胁迫的反应,而与后代基因型无关。此外,我们发现,在生殖细胞(卵母细胞)中表达野生型44isp-1足以恢复后代对渗透胁迫的正常反应。化学诱变筛选显示,母体ETC成分通过改变后代的AMP激酶功能来调节后代对应激反应,进而调节ATP和甘油代谢以响应持续的渗透胁迫。据我们所知,这些数据首次表明,需要适当的卵母细胞ETC组成,才能将母亲的环境与后代代谢的适应性变化联系起来。数据还提出了一种可能性,即不同动物表现出胰岛素调节的卵母细胞线粒体重塑的原因是为了调整后代代谢以最佳地匹配其母亲的环境。
    During maturation oocytes undergo a recently discovered mitochondrial proteome remodeling event in flies1, frogs1, and humans2. This oocyte mitochondrial remodeling, which includes substantial changes in electron transport chain (ETC) subunit abundance1,2, is regulated by maternal insulin signaling1. Why oocytes undergo mitochondrial remodeling is unknown, with some speculating that it might be an evolutionarily conserved mechanism to protect oocytes from genotoxic damage by reactive oxygen species (ROS)2. In Caenorhabditis elegans, we previously found that maternal exposure to osmotic stress drives a 50-fold increase in offspring survival in response to future osmotic stress3. Like mitochondrial remodeling, we found that this intergenerational adaptation is also regulated by insulin signaling to oocytes3. Here, we used proteomics and genetic manipulations to show that insulin signaling to oocytes regulates offspring\'s ability to adapt to future stress via a mechanism that depends on ETC composition in maternal oocytes. Specifically, we found that maternally expressed mutant alleles of nduf-7 (complex I subunit) or isp-1 (complex III subunit) altered offspring\'s response to osmotic stress at hatching independently of offspring genotype. Furthermore, we found that expressing wild-type isp-1 in germ cells (oocytes) was sufficient to restore offspring\'s normal response to osmotic stress. Chemical mutagenesis screens revealed that maternal ETC composition regulates offspring\'s response to stress by altering AMP kinase function in offspring which in turn regulates both ATP and glycerol metabolism in response to continued osmotic stress. To our knowledge, these data are the first to show that proper oocyte ETC composition is required to link a mother\'s environment to adaptive changes in offspring metabolism. The data also raise the possibility that the reason diverse animals exhibit insulin regulated remodeling of oocyte mitochondria is to tailor offspring metabolism to best match the environment of their mother.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The immunosuppressive activity of myriocin (ISP-1), a lead compound of fingolimod (FTY720), is derived from its 2-amino-1,3-propandiol structure. A non-proteinogenic amino acid, (2S,6R)-diamino-(5R,7)-dihydroxy-heptanoic acid (DADH), that contains this structure, was recently identified as a biosynthetic intermediate of a dipeptide secondary metabolite, vazabitide A, in Streptmyces sp. SANK 60404; however its effect on adaptive immunity has not yet been examined. In this study, we examined whether DADH suppresses mixed lymphocyte reaction using mouse bone marrow-derived dendritic cells (BMDCs) and allogeneic splenic T cells. Although T cell proliferation induced by cross-linking CD3 and CD28 were not suppressed by DADH unlike ISP-1, the pre-incubation of BMDCs with DADH but not ISP-1 significantly decreased allogeneic CD8+ T cell expansion. Based on these results, we concluded that DADH suppresses DC-mediated T cell activation by targeting DCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The mitochondrial unfolded protein response (mitoUPR) is a stress response pathway activated by disruption of proteostasis in the mitochondria. This pathway has been proposed to influence lifespan, with studies suggesting that mitoUPR activation has complex effects on longevity.
    Here, we examined the contribution of the mitoUPR to the survival and lifespan of three long-lived mitochondrial mutants in Caenorhabditis elegans by modulating the levels of ATFS-1, the central transcription factor that mediates the mitoUPR. We found that clk-1, isp-1, and nuo-6 worms all exhibit an ATFS-1-dependent activation of the mitoUPR. While loss of atfs-1 during adulthood does not affect lifespan in any of these strains, absence of atfs-1 during development prevents clk-1 and isp-1 worms from reaching adulthood and reduces the lifespan of nuo-6 mutants. Examining the mechanism by which deletion of atfs-1 reverts nuo-6 lifespan to wild-type, we find that many of the transcriptional changes present in nuo-6 worms are mediated by ATFS-1. Genes exhibiting an ATFS-1-dependent upregulation in nuo-6 worms are enriched for transcripts that function in stress response and metabolism. Consistent, with this finding, loss of atfs-1 abolishes the enhanced stress resistance observed in nuo-6 mutants and prevents upregulation of multiple stress response pathways including the HIF-1-mediated hypoxia response, SKN-1-mediated oxidative stress response and DAF-16-mediated stress response.
    Our results suggest that in the long-lived mitochondrial mutant nuo-6 activation of the mitoUPR causes atfs-1-dependent changes in the expression of genes involved in stress response and metabolism, which contributes to the extended longevity observed in this mutant. This work demonstrates that the mitoUPR can modulate multiple stress response pathways and suggests that it is crucial for the development and lifespan of long-lived mitochondrial mutants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Mutations affecting components of the mitochondrial electron transport chain have been shown to increase lifespan in multiple species including the worm Caenorhabditis elegans. While it was originally proposed that decreased generation of reactive oxygen species (ROS) resulting from lower rates of electron transport could account for the observed increase in lifespan, recent evidence indicates that ROS levels are increased in at least some of these long-lived mitochondrial mutants. Here, we show that the long-lived mitochondrial mutant isp-1 worms have increased resistance to oxidative stress. Our results suggest that elevated ROS levels in isp-1 worms cause the activation of multiple stress-response pathways including the mitochondrial unfolded protein response, the SKN-1-mediated stress response, and the hypoxia response. In addition, these worms have increased expression of specific antioxidant enzymes, including a marked upregulation of the inducible superoxide dismutase genes sod-3 and sod-5. Examining the contribution of sod-3 and sod-5 to the oxidative stress resistance in isp-1 worms revealed that loss of either of these genes increased resistance to oxidative stress, but not other forms of stress. Deletion of sod-3 or sod-5 decreased the lifespan of isp-1 worms and further exacerbated their slow physiologic rates. Thus, while deletion of sod-3 and sod-5 genes has little impact on stress resistance, physiologic rates or lifespan in wild-type worms, these genes are required for the longevity of isp-1 worms. Overall, this work shows that the increased resistance to oxidative stress in isp-1 worms does not account for their longevity, and that resistance to oxidative stress can be experimentally dissociated from lifespan.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Comment
    Several intragenic mutations suppress the C. elegans isp-1(qm150) allele of the mitochondrial Rieske iron-sulfur protein (ISP), a catalytic subunit of Complex III of the respiratory chain. These mutations were located in a helical region of the \"tether\" span of ISP-1, distant from the primary mutation in the extrinsic head, and suppressed all pleiotropic phenotypes associated with the qm150 allele. Analysis of these suppressors revealed control of electron transfer into Complex III through a \"spring-loaded\" mechanism involving a binding force for formation of enzyme-substrate complex, counter balanced by forces (a chemical \"spring\") favoring helix formation in the tether. The primary P→S mutation results in inhibition of electron flow into the Q-cycle by decreasing the binding force, and the tether mutations relieve this inhibition by weakening the \"spring.\" In this commentary we discuss additional control features, and relate the primary inhibition to outcomes at the organismal level. In particular, the sensitivity to hyperoxia and the elevated reactive oxygen species (ROS) seen in isp-1(qm150), likely reflect over-reduction of the quinone pool, which is upstream of the inhibited site; at high O2, this would lead to increased ROS production through complex I. We speculate that alternative NADH:ubiquinone oxidoreductase activity in C. elegans from the worm apoptosis inducing factor (AIF) homolog (WAH-1) might also be involved, and that WAH-1 might have a \"canary\" function in detection of this adverse state (high O2/reduced pool), and a role in protection of the organism by transformation to AIF-like products, and apoptotic recycling of defective cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Mitochondria play an important role in numerous diseases as well as normative aging. Severe reduction in mitochondrial function contributes to childhood disorders such as Leigh Syndrome, whereas mild disruption can extend the lifespan of model organisms. The Caenorhabditis elegans isp-1 gene encodes the Rieske iron-sulfur protein subunit of cytochrome c oxidoreductase (complex III of the electron transport chain). The partial loss of function allele, isp-1(qm150), leads to several pleiotropic phenotypes. To better understand the molecular mechanisms of ISP-1 function, we sought to identify genetic suppressors of the delayed development of isp-1(qm150) animals. Here we report a series of intragenic suppressors, all located within a highly conserved six amino acid tether region of ISP-1. These intragenic mutations suppress all of the evaluated isp-1(qm150) phenotypes, including developmental rate, pharyngeal pumping rate, brood size, body movement, activation of the mitochondrial unfolded protein response reporter, CO2 production, mitochondrial oxidative phosphorylation, and lifespan extension. Furthermore, analogous mutations show a similar effect when engineered into the budding yeast Rieske iron-sulfur protein Rip1, revealing remarkable conservation of the structure-function relationship of these residues across highly divergent species. The focus on a single subunit as causal both in generation and in suppression of diverse pleiotropic phenotypes points to a common underlying molecular mechanism, for which we propose a \"spring-loaded\" model. These observations provide insights into how gating and control processes influence the function of ISP-1 in mediating pleiotropic phenotypes including developmental rate, movement, sensitivity to stress, and longevity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号