interpretability

可解释性
  • 文章类型: Journal Article
    社交平台的用户通常将这些网站视为发布心理健康问题的支持空间。这些对话包含有关个人健康风险的重要痕迹。最近,研究人员利用这些在线信息来构建心理健康检测模型,旨在识别Twitter等平台上面临风险的用户,Reddit或Facebook。这些模型中的大多数都专注于实现良好的分类结果,忽略了决策的可解释性和可解释性。最近的研究指出了使用临床标志物的重要性,如使用症状,提高卫生专业人员对计算模型的信任。在本文中,我们引入了基于变压器的体系结构,旨在检测和解释社交媒体中用户生成内容中抑郁症状标记的出现。我们提出了两种方法:(I)训练模型进行分类,另一个用于分别解释分类器的决策,并且(ii)在单个模型中同时统一两个任务。此外,对于后一种方式,我们还利用上下文学习和微调研究了最近的会话大语言模型(LLM)的性能。我们的模型提供自然语言解释,符合验证的症状,从而使临床医生能够更有效地解释决策。我们使用最近以症状为中心的数据集评估我们的方法,使用离线指标和专家在环评估来评估我们的模型解释的质量。我们的发现表明,在产生可解释的基于症状的解释的同时,有可能获得良好的分类结果。
    Users of social platforms often perceive these sites as supportive spaces to post about their mental health issues. Those conversations contain important traces about individuals\' health risks. Recently, researchers have exploited this online information to construct mental health detection models, which aim to identify users at risk on platforms like Twitter, Reddit or Facebook. Most of these models are focused on achieving good classification results, ignoring the explainability and interpretability of the decisions. Recent research has pointed out the importance of using clinical markers, such as the use of symptoms, to improve trust in the computational models by health professionals. In this paper, we introduce transformer-based architectures designed to detect and explain the appearance of depressive symptom markers in user-generated content from social media. We present two approaches: (i) train a model to classify, and another one to explain the classifier\'s decision separately and (ii) unify the two tasks simultaneously within a single model. Additionally, for this latter manner, we also investigated the performance of recent conversational Large Language Models (LLMs) utilizing both in-context learning and finetuning. Our models provide natural language explanations, aligning with validated symptoms, thus enabling clinicians to interpret the decisions more effectively. We evaluate our approaches using recent symptom-focused datasets, using both offline metrics and expert-in-the-loop evaluations to assess the quality of our models\' explanations. Our findings demonstrate that it is possible to achieve good classification results while generating interpretable symptom-based explanations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于三维卷积神经网络(3DCNN)和遗传算法(GA)的自适应可解释集成模型,即,3DCNN+EL+GA,建议区分患有阿尔茨海默病(AD)或轻度认知障碍(MCI)的受试者,并进一步确定以数据驱动方式显着有助于分类的区分性大脑区域。另外,在体素水平上的区分性脑子区域进一步位于这些已获得的大脑区域中,为CNN设计的基于梯度的归因方法。除了揭示有区别的大脑子区域,阿尔茨海默病神经影像学计划(ADNI)和开放获取成像研究系列(OASIS)的数据集上的测试结果表明,3DCNN+EL+GA优于其他最先进的深度学习算法,并且所获得的有区别的大脑区域(例如,头端海马体,尾部海马,和内侧杏仁核)与情绪有关,记忆,语言,和其他基本脑功能在AD过程早期受损。未来的研究需要检查所提出的方法和想法的普遍性,以辨别其他脑部疾病的区分性大脑区域,比如严重的抑郁症,精神分裂症,自闭症,和脑血管疾病,使用神经成像。
    Adaptive interpretable ensemble model based on three-dimensional Convolutional Neural Network (3DCNN) and Genetic Algorithm (GA), i.e., 3DCNN+EL+GA, was proposed to differentiate the subjects with Alzheimer\'s Disease (AD) or Mild Cognitive Impairment (MCI) and further identify the discriminative brain regions significantly contributing to the classifications in a data-driven way. Plus, the discriminative brain sub-regions at a voxel level were further located in these achieved brain regions, with a gradient-based attribution method designed for CNN. Besides disclosing the discriminative brain sub-regions, the testing results on the datasets from the Alzheimer\'s Disease Neuroimaging Initiative (ADNI) and the Open Access Series of Imaging Studies (OASIS) indicated that 3DCNN+EL+GA outperformed other state-of-the-art deep learning algorithms and that the achieved discriminative brain regions (e.g., the rostral hippocampus, caudal hippocampus, and medial amygdala) were linked to emotion, memory, language, and other essential brain functions impaired early in the AD process. Future research is needed to examine the generalizability of the proposed method and ideas to discern discriminative brain regions for other brain disorders, such as severe depression, schizophrenia, autism, and cerebrovascular diseases, using neuroimaging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    具有骨诱导性的生物材料由于其独特的结构和功能而被广泛用于骨缺损的修复。机器学习(ML)在分析骨诱导性和加速新材料设计方面至关重要。然而,挑战包括建立一个全面的骨诱导材料数据库和处理低质量,不同的数据。作为评价生物材料骨诱导性的标准,异位骨化已被使用。本文汇集了过去三十年的研究成果,产生了一个由专家验证的强大数据库。为了解决数据样本有限的问题,缺少数据,和高维稀疏性,制定了数据增强策略。该方法实现了0.921的曲线下面积(AUC)、0.839的精度和0.833的召回率。模型解释确定了关键因素,如孔隙度,骨形态发生蛋白-2(BMP-2),和羟基磷灰石(HA)比例是结果的关键决定因素。通过部分依赖图(PDP)分析优化孔结构和材料组成,在动物实验中产生了14.7±7%的新骨面积比。超过数据库平均值的10.97%。这突出了ML在骨诱导材料的开发和设计中的重要潜力。重要声明:本研究利用机器学习分析骨诱导生物材料,解决数据库创建和数据质量方面的挑战。我们的数据增强策略显著提高了模型性能。通过优化孔隙结构和材料组成,我们增加了新骨形成率,展示了机器学习在生物材料设计中的巨大潜力。
    Biomaterials with osteoinductivity are widely used for bone defect repair due to their unique structures and functions. Machine learning (ML) is pivotal in analyzing osteoinductivity and accelerating new material design. However, challenges include creating a comprehensive database of osteoinductive materials and dealing with low-quality, disparate data. As a standard for evaluating the osteoinductivity of biomaterials, ectopic ossification has been used. This paper compiles research findings from the past thirty years, resulting in a robust database validated by experts. To tackle issues of limited data samples, missing data, and high-dimensional sparsity, a data enhancement strategy is developed. This approach achieved an area under the curve (AUC) of 0.921, a precision of 0.839, and a recall of 0.833. Model interpretation identified key factors such as porosity, bone morphogenetic protein-2 (BMP-2), and hydroxyapatite (HA) proportion as crucial determinants of outcomes. Optimizing pore structure and material composition through partial dependence plot (PDP) analysis led to a new bone area ratio of 14.7 ± 7 % in animal experiments, surpassing the database average of 10.97 %. This highlights the significant potential of ML in the development and design of osteoinductive materials. STATEMENT OF SIGNIFICANCE: This study leverages machine learning to analyze osteoinductive biomaterials, addressing challenges in database creation and data quality. Our data enhancement strategy significantly improved model performance. By optimizing pore structure and material composition, we increased new bone formation rates, showcasing the vast potential of machine learning in biomaterial design.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    文本分类通过机器学习(ML)和深度学习(DL)对大量文本数据进行组织和分类,在医学领域发挥着至关重要的作用。人工智能(AI)技术在医疗保健中的采用引起了人们对AI模型可解释性的担忧,通常被认为是“黑匣子”。“可解释的AI(XAI)技术旨在通过阐明AI模型决策过程来缓解这一问题。在本文中,我们提出了一个范围审查,探讨不同的XAI技术在医学文本分类中的应用,识别两种主要类型:特定于模型的方法和与模型无关的方法。尽管开发人员有一些积极的反馈,对这些技术的医疗最终用户的正式评估仍然有限。该评论强调了XAI进一步研究的必要性,以增强医疗保健中AI驱动的决策过程的信任和透明度。
    Text classification plays an essential role in the medical domain by organizing and categorizing vast amounts of textual data through machine learning (ML) and deep learning (DL). The adoption of Artificial Intelligence (AI) technologies in healthcare has raised concerns about the interpretability of AI models, often perceived as \"black boxes.\" Explainable AI (XAI) techniques aim to mitigate this issue by elucidating AI model decision-making process. In this paper, we present a scoping review exploring the application of different XAI techniques in medical text classification, identifying two main types: model-specific and model-agnostic methods. Despite some positive feedback from developers, formal evaluations with medical end users of these techniques remain limited. The review highlights the necessity for further research in XAI to enhance trust and transparency in AI-driven decision-making processes in healthcare.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    近年来,人工智能(AI)已经在日常生活的许多领域获得了势头。在医疗保健方面,AI可用于诊断或预测疾病。然而,需要可解释的AI(XAI)来确保用户了解算法如何做出决定。在我们的研究项目中,机器学习方法用于住院菌血症(HOB)的个体风险预测。本文提出了以用户为中心的XAI用于HOB风险预测的逐步实施和评估过程的愿景。最初的需求分析揭示了用户对使用和信任此类风险预测应用程序的可解释性需求的初步见解。然后,研究结果被用来提出逐步的过程,以用户为中心的评估。
    In recent years, artificial intelligence (AI) has gained momentum in many fields of daily live. In healthcare, AI can be used for diagnosing or predicting illnesses. However, explainable AI (XAI) is needed to ensure that users understand how the algorithm arrives at a decision. In our research project, machine learning methods are used for individual risk prediction of hospital-onset bacteremia (HOB). This paper presents a vision on a step-wise process for implementation and evaluation of user-centered XAI for risk prediction of HOB. An initial requirement analysis revealed first insights on the users\' needs of explainability to use and trust such risk prediction applications. The findings were then used to propose step-wise process towards a user-centered evaluation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:耳鸣是一种神经病理学状况,在没有外部声源的情况下导致耳朵轻度嗡嗡声或鸣响。当前的耳鸣诊断方法通常依赖于主观评估并且需要复杂的医学检查。本研究旨在提出一种使用听觉迟发反应(ALR)和脑电图(EEG)的可解释耳鸣诊断框架,灵感来自间隙前脉冲抑制(GPI)范式。
    方法:我们收集了44名耳鸣患者和47名听力损失匹配对照的自发EEG和ALR数据,使用专门的硬件来捕获对具有嵌入间隙的声音刺激的反应。在这项耳鸣和对照组的队列研究中,我们检查了N-P复合物的EEG谱和ALR特征,比较对间隙持续时间50和20ms以及无间隙条件的响应。为此,我们使用ALR和EEG指标开发了一个可解释的耳鸣诊断模型,提升机器学习架构,和可解释的特征归因方法。
    结果:我们提出的模型在识别耳鸣方面达到了90%的准确性,性能曲线下的面积为0.89。可解释的人工智能方法揭示了嵌入间隙的ALR特征,例如N1-P2的GPI比率和EEG频谱比率,可以作为耳鸣的诊断指标。我们的方法成功地为使用间隙嵌入的听觉和神经特征的耳鸣诊断提供了个性化的预测解释。
    结论:GPI的缺陷以及脑电图α-β比值的活性为评估耳鸣风险提供了有希望的筛查工具,与听力研究的当前临床见解保持一致。
    OBJECTIVE: Tinnitus is a neuropathological condition that results in mild buzzing or ringing of the ears without an external sound source. Current tinnitus diagnostic methods often rely on subjective assessment and require intricate medical examinations. This study aimed to propose an interpretable tinnitus diagnostic framework using auditory late response (ALR) and electroencephalogram (EEG), inspired by the gap-prepulse inhibition (GPI) paradigm.
    METHODS: We collected spontaneous EEG and ALR data from 44 patients with tinnitus and 47 hearing loss-matched controls using specialized hardware to capture responses to sound stimuli with embedded gaps. In this cohort study of tinnitus and control groups, we examined EEG spectral and ALR features of N-P complexes, comparing the responses to gap durations of 50 and 20 ms alongside no-gap conditions. To this end, we developed an interpretable tinnitus diagnostic model using ALR and EEG metrics, boosting machine learning architecture, and explainable feature attribution approaches.
    RESULTS: Our proposed model achieved 90 % accuracy in identifying tinnitus, with an area under the performance curve of 0.89. The explainable artificial intelligence approaches have revealed gap-embedded ALR features such as the GPI ratio of N1-P2 and EEG spectral ratio, which can serve as diagnostic metrics for tinnitus. Our method successfully provides personalized prediction explanations for tinnitus diagnosis using gap-embedded auditory and neurological features.
    CONCLUSIONS: Deficits in GPI alongside activity in the EEG alpha-beta ratio offer a promising screening tool for assessing tinnitus risk, aligning with current clinical insights from hearing research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    预测锂离子电池(LIB)的容量对于确保LIB的安全运行和延长其使用寿命至关重要。然而,LIB容易受到环境干扰的影响,这可能会影响预测的准确性。此外,预测LIB容量的过程中的可解释性对于用户理解模型也很重要,发现问题,并做出决定。在这项研究中,介绍了一种考虑环境干扰(IM-EI)的LIB容量预测方法。斯皮尔曼相关系数,可解释性原则,信念规则库(BRB),和可解释性约束用于提高IM-EI的预测精度和可解释性。引入动态属性可靠性以最小化环境干扰的影响。实验结果表明,IM-EI模型与其他模型相比具有较好的可解释性和较高的精度。在干扰条件下,该模型仍具有较好的精度和鲁棒性。
    Predicting the capacity of lithium-ion battery (LIB) plays a crucial role in ensuring the safe operation of LIBs and prolonging their lifespan. However, LIBs are easily affected by environmental interference, which may impact the precision of predictions. Furthermore, interpretability in the process of predicting LIB capacity is also important for users to understand the model, identify issues, and make decisions. In this study, an interpretable method considering environmental interference (IM-EI) for predicting LIB capacity is introduced. Spearman correlation coefficients, interpretability principles, belief rule base (BRB), and interpretability constraints are used to improve the prediction precision and interpretability of IM-EI. Dynamic attribute reliability is introduced to minimize the effect of environmental interference. The experimental results show that IM-EI model has good interpretability and high precision compared to the other models. Under interference conditions, the model still has good precision and robustness.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    可靠性学习和可解释决策对于多模态医学图像分割至关重要。尽管许多作品尝试了多模态医学图像分割,他们很少探索每种模式为分割提供了多少可靠性。此外,现有的决策方法,如softmax函数缺乏多模态融合的可解释性。在这项研究中,我们提出了一种新的方法,称为上下文折扣证据网络(CDE-Net),用于多模态医学图像分割下的可靠性学习和可解释决策。具体来说,CDE-Net首先使用提出的证据决策模块通过不确定性度量对语义证据进行建模。然后,它利用上下文折扣融合层来学习每种模态提供的可靠性。最后,部署了多级损失函数来优化证据建模和可靠性学习。此外,本研究通过讨论像素归因图和学习的可靠性系数之间的一致性来阐述框架的可解释性。在多模态大脑和肝脏数据集上进行了广泛的实验。CDE-Net获得高性能,脑肿瘤分割的平均Dice评分为0.914,肝肿瘤分割的平均Dice评分为0.913,这证明了CDE-Net在促进基于人工智能的多模态医学图像融合的解释方面具有巨大的潜力。
    Reliability learning and interpretable decision-making are crucial for multi-modality medical image segmentation. Although many works have attempted multi-modality medical image segmentation, they rarely explore how much reliability is provided by each modality for segmentation. Moreover, the existing approach of decision-making such as the softmax function lacks the interpretability for multi-modality fusion. In this study, we proposed a novel approach named contextual discounted evidential network (CDE-Net) for reliability learning and interpretable decision-making under multi-modality medical image segmentation. Specifically, the CDE-Net first models the semantic evidence by uncertainty measurement using the proposed evidential decision-making module. Then, it leverages the contextual discounted fusion layer to learn the reliability provided by each modality. Finally, a multi-level loss function is deployed for the optimization of evidence modeling and reliability learning. Moreover, this study elaborates on the framework interpretability by discussing the consistency between pixel attribution maps and the learned reliability coefficients. Extensive experiments are conducted on both multi-modality brain and liver datasets. The CDE-Net gains high performance with an average Dice score of 0.914 for brain tumor segmentation and 0.913 for liver tumor segmentation, which proves CDE-Net has great potential to facilitate the interpretation of artificial intelligence-based multi-modality medical image fusion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    安全关键域通常采用遵循顺序决策设置的自主代理,由此,代理遵循策略来指示在每个步骤处的适当动作。AI从业者经常使用强化学习算法来允许代理找到最佳策略。然而,顺序系统通常缺乏明确和直接的错误行为迹象,其后果只有事后才可见,使人类难以理解系统故障。在强化学习中,这被称为信用分配问题。为了有效地与自治系统协作,特别是在安全关键的环境中,解释应该使用户能够更好地理解代理的策略并预测系统行为,以便用户认识到潜在的故障,并且可以诊断和减轻这些故障。然而,人类是多样化的,具有先天的偏见或偏好,这可能会增强或削弱顺序代理的政策解释的效用。因此,在本文中,我们设计并进行了人体实验,以确定影响感知可用性的因素,并在顺序设置中对强化学习代理进行政策解释的客观有用性。我们的研究有两个因素:向用户显示的政策解释的方式(树,文本,修改后的文本,和程序)和代理人的“第一印象”,即,用户是否在介绍性校准视频中看到代理成功或失败。我们的发现描述了偏好-性能权衡,其中参与者认为基于语言的政策解释更有用;然而,当参与者以决策树的形式提供解释时,他们能够更好地客观预测代理人的行为。我们的结果表明,用户特定的因素,如计算机科学经验(p<0.05),和情境因素,例如观看代理崩溃(p<0.05),能显著影响解释的感知和有用性。这项研究提供了关键的见解,以缓解有关不完全合规和依赖的普遍问题,在安全关键的环境中指数级地更有害,为XAI开发人员提供了未来政策解释工作的前进道路。
    Safefy-critical domains often employ autonomous agents which follow a sequential decision-making setup, whereby the agent follows a policy to dictate the appropriate action at each step. AI-practitioners often employ reinforcement learning algorithms to allow an agent to find the best policy. However, sequential systems often lack clear and immediate signs of wrong actions, with consequences visible only in hindsight, making it difficult to humans to understand system failure. In reinforcement learning, this is referred to as the credit assignment problem. To effectively collaborate with an autonomous system, particularly in a safety-critical setting, explanations should enable a user to better understand the policy of the agent and predict system behavior so that users are cognizant of potential failures and these failures can be diagnosed and mitigated. However, humans are diverse and have innate biases or preferences which may enhance or impair the utility of a policy explanation of a sequential agent. Therefore, in this paper, we designed and conducted human-subjects experiment to identify the factors which influence the perceived usability with the objective usefulness of policy explanations for reinforcement learning agents in a sequential setting. Our study had two factors: the modality of policy explanation shown to the user (Tree, Text, Modified Text, and Programs) and the \"first impression\" of the agent, i.e., whether the user saw the agent succeed or fail in the introductory calibration video. Our findings characterize a preference-performance tradeoff wherein participants perceived language-based policy explanations to be significantly more useable; however, participants were better able to objectively predict the agent\'s behavior when provided an explanation in the form of a decision tree. Our results demonstrate that user-specific factors, such as computer science experience (p < 0.05), and situational factors, such as watching agent crash (p < 0.05), can significantly impact the perception and usefulness of the explanation. This research provides key insights to alleviate prevalent issues regarding innapropriate compliance and reliance, which are exponentially more detrimental in safety-critical settings, providing a path forward for XAI developers for future work on policy-explanations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号