interneurons

中间神经元
  • 文章类型: Journal Article
    感官体验和学习会引起兴奋性和抑制性突触的持久变化,从而为存储器提供了关键的衬底。然而,兴奋性长时程增强(eLTP)或抑郁(eLTD)与抑制性突触同时变化(iLTP/iLTD)的协同调节仍不清楚.在这里,我们研究了NMDA诱导的突触可塑性的共表达在兴奋性和抑制性突触的海马CA1锥体细胞(PC)使用电生理,光遗传学,和药理学方法。我们发现,生长抑素(SST)和小白蛋白(PV)阳性中间神经元对CA1PC的抑制性输入在瞬时NMDA受体激活后显示出输入特异性的长期可塑性变化。值得注意的是,来自SST阳性中间神经元的突触一致表现出iLTP,与激发可塑性的方向无关,而来自PV阳性中间神经元的突触主要显示iLTP与eLTP并发,而不是eLTD。已知神经可塑性依赖于细胞外基质,我们测试了金属蛋白酶(MMP)抑制的影响。MMP3阻断干扰了所有抑制性输入的GABA能可塑性,而MMP9抑制选择性阻断与eLTP共同发生的SST-CA1PC突触中的eLTP和iLTP,而不阻断eLTP。这些发现证明了兴奋性和抑制性可塑性共表达的解离。我们认为这些可塑性共表达的机制可能与维持兴奋-抑制平衡和调节神经元整合模式有关。
    Sensory experiences and learning induce long-lasting changes in both excitatory and inhibitory synapses, thereby providing a crucial substrate for memory. However, the co-tuning of excitatory long-term potentiation (eLTP) or depression (eLTD) with the simultaneous changes at inhibitory synapses (iLTP/iLTD) remains unclear. Herein, we investigated the co-expression of NMDA-induced synaptic plasticity at excitatory and inhibitory synapses in hippocampal CA1 pyramidal cells (PCs) using a combination of electrophysiological, optogenetic, and pharmacological approaches. We found that inhibitory inputs from somatostatin (SST) and parvalbumin (PV)-positive interneurons onto CA1 PCs display input-specific long-term plastic changes following transient NMDA receptor activation. Notably, synapses from SST-positive interneurons consistently exhibited iLTP, irrespective of the direction of excitatory plasticity, whereas synapses from PV-positive interneurons predominantly showed iLTP concurrent with eLTP, rather than eLTD. As neuroplasticity is known to depend on the extracellular matrix, we tested the impact of metalloproteinases (MMP) inhibition. MMP3 blockade interfered with GABAergic plasticity for all inhibitory inputs, whereas MMP9 inhibition selectively blocked eLTP and iLTP in SST-CA1PC synapses co-occurring with eLTP but not eLTD. These findings demonstrate the dissociation of excitatory and inhibitory plasticity co-expression. We propose that these mechanisms of plasticity co-expression may be involved in maintaining excitation-inhibition balance and modulating neuronal integration modes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    运动技能获得的效率取决于年龄,使得在以后的生活中学习复杂的动作变得越来越具有挑战性。斑马雀,例如,在发展的关键时期获得复杂的人声运动程序,此后,学习的歌曲基本上不受修改的影响。尽管抑制性中间神经元与关键时期的闭合有关,目前尚不清楚操纵它们是否可以重新打开增强的运动可塑性窗口。使用药理学和细胞类型特异性光遗传学方法,我们操纵了成年斑马雀运动前区域的抑制性神经元活性,超出了其关键时期。当受到新颖歌曲形式的听觉刺激时,被操纵的鸟类为其稳定的歌曲序列添加了新的人声音节。通过在感官体验期间解除运动前区域的抑制,我们重新引入了声带可塑性,在不影响现有歌曲制作的情况下,促进音节曲目的扩展。我们的发现提供了对运动技能学习能力的见解,提供受伤后运动恢复的潜力,并提出了治疗涉及抑制功能障碍的神经发育障碍的途径。
    The efficiency of motor skill acquisition is age-dependent, making it increasingly challenging to learn complex manoeuvres later in life. Zebra finches, for instance, acquire a complex vocal motor programme during a developmental critical period after which the learned song is essentially impervious to modification. Although inhibitory interneurons are implicated in critical period closure, it is unclear whether manipulating them can reopen heightened motor plasticity windows. Using pharmacology and a cell-type specific optogenetic approach, we manipulated inhibitory neuron activity in a premotor area of adult zebra finches beyond their critical period. When exposed to auditory stimulation in the form of novel songs, manipulated birds added new vocal syllables to their stable song sequence. By lifting inhibition in a premotor area during sensory experience, we reintroduced vocal plasticity, promoting an expansion of the syllable repertoire without compromising pre-existing song production. Our findings provide insights into motor skill learning capacities, offer potential for motor recovery after injury, and suggest avenues for treating neurodevelopmental disorders involving inhibitory dysfunctions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    根据在精神分裂症中观察到的病理生理变化,γ-氨基丁酸(GABA)假说可能促进该疾病靶向治疗的发展.这个假设,主要来自死后的大脑结果,假设一组GABA能神经元的功能障碍,特别是含有小白蛋白的中间神经元。在大脑皮层,小白蛋白阳性GABA能中间神经元的快速尖峰放电受Kv3.1和Kv3.2通道调节,属于钾通道亚家族。在精神分裂症患者的前额叶皮层中观察到Kv3.1水平降低,提示Kv3通道调节剂治疗精神分裂症的研究。然而,这些调节剂在精神分裂症的药物治疗中有效需要捕获小白蛋白神经元功能障碍的生物标志物。脑电图和脑磁图研究表明,精神分裂症患者的诱发伽马振荡受损,这可能反映了皮质小清蛋白神经元的功能障碍。这篇综述总结了这些主题,并概述了结合生物标志物的治疗方法的开发如何创新精神分裂症的治疗方法并可能改变药物治疗的目标。
    Based on the pathophysiological changes observed in schizophrenia, the gamma-aminobutyric acid (GABA) hypothesis may facilitate the development of targeted treatments for this disease. This hypothesis, mainly derived from postmortem brain results, postulates dysfunctions in a subset of GABAergic neurons, particularly parvalbumin-containing interneurons. In the cerebral cortex, the fast spike firing of parvalbumin-positive GABAergic interneurons is regulated by the Kv3.1 and Kv3.2 channels, which belong to a potassium channel subfamily. Decreased Kv3.1 levels have been observed in the prefrontal cortex of patients with schizophrenia, prompting the investigation of Kv3 channel modulators for the treatment of schizophrenia. However, biomarkers that capture the dysfunction of parvalbumin neurons are required for these modulators to be effective in the pharmacotherapy of schizophrenia. Electroencephalography and magnetoencephalography studies have demonstrated impairments in evoked gamma oscillations in patients with schizophrenia, which may reflect the dysfunction of cortical parvalbumin neurons. This review summarizes these topics and provides an overview of how the development of therapeutics that incorporate biomarkers could innovate the treatment of schizophrenia and potentially change the targets of pharmacotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    缓慢和快速运动由具有匹配特性和连接的不同脊髓V2a神经元组控制。
    Slow and fast movements are controlled by distinct sets of spinal V2a neurons with matching properties and connections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    哺乳动物嗅球(OB)中的抑制性回路会随着嗅觉信息从周围受体传播到下游皮质而动态地重新格式化嗅觉信息。为了深入了解特定的OB中间神经元类型如何支持这种感觉处理,我们检查了兴奋性二尖瓣和簇绒细胞(MTC)之间的统一突触相互作用,OB投影神经元,和使用急性小鼠脑切片中的成对和四组全细胞记录的保守的无轴突外部丛状层中间神经元(EPL-INs)。生理学,形态学,神经化学,和突触分析将EPL-INs分为不同的亚型,并揭示表达小白蛋白的快速尖峰EPL-INs(FSIs)以释放能力的树突状神经支配MTC,并以突触方式引爆以介导快速,短潜伏期复发和侧向抑制。稀疏MTC同步超早期增加了这种高保真抑制,而感觉传入激活与单细胞沉默相结合表明,单个FSI占总网络驱动的MTC侧向抑制的很大一部分。因此,通过爆炸驱动的高保真外围抑制,可以有力地改变OB输出。
    Inhibitory circuits in the mammalian olfactory bulb (OB) dynamically reformat olfactory information as it propagates from peripheral receptors to downstream cortex. To gain mechanistic insight into how specific OB interneuron types support this sensory processing, we examine unitary synaptic interactions between excitatory mitral and tufted cells (MTCs), the OB projection neurons, and a conserved population of anaxonic external plexiform layer interneurons (EPL-INs) using pair and quartet whole-cell recordings in acute mouse brain slices. Physiological, morphological, neurochemical, and synaptic analyses divide EPL-INs into distinct subtypes and reveal that parvalbumin-expressing fast-spiking EPL-INs (FSIs) perisomatically innervate MTCs with release-competent dendrites and synaptically detonate to mediate fast, short-latency recurrent and lateral inhibition. Sparse MTC synchronization supralinearly increases this high-fidelity inhibition, while sensory afferent activation combined with single-cell silencing reveals that individual FSIs account for a substantial fraction of total network-driven MTC lateral inhibition. OB output is thus powerfully shaped by detonation-driven high-fidelity perisomatic inhibition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自闭症谱系障碍(ASD)可由环境因素引起。这些因素在神经系统发育的早期起作用,并导致刻板的重复行为和减少的社交互动,在其他结果中。人们对这些行为是如何产生的知之甚少。在孕妇中,丙戊酸(VPA)的递送(以控制癫痫发作或稳定情绪)或病毒的免疫激活会增加后代中ASD的发生率。我们发现VPA或聚肌苷:胞嘧啶(模拟病毒感染),在小鼠胚胎第12.5天施用,到出生后第10天,在内侧前额叶皮层中表达PV和CCK的中间神经元中诱导了从GABA到谷氨酸的神经递质转换。这种转变仅在出生后早期发育的短暂时期内存在,在出生后第21天在雄性和雌性小鼠中观察到,并在出生后第30天在雄性和雌性小鼠中逆转。在出生后第90天,雄性小鼠表现出刻板的重复行为和减少的社交互动,而雌性小鼠仅表现出刻板的重复行为。在出生后第10天在表达PV和CCK的中间神经元中转染GAD1,以重新引入GABA表达,超越开关,阻止自闭症样行为的表达。这些发现指出了神经递质转换在介导自闭症的环境原因中的重要作用。
    Autism spectrum disorders (ASD) can be caused by environmental factors. These factors act early in the development of the nervous system and induce stereotyped repetitive behaviors and diminished social interactions, among other outcomes. Little is known about how these behaviors are produced. In pregnant women, delivery of valproic acid (VPA) (to control seizure activity or stabilize mood) or immune activation by a virus increases the incidence of ASD in offspring. We found that either VPA or Poly Inosine:Cytosine (which mimics a viral infection), administered at mouse embryonic day 12.5, induced a neurotransmitter switch from GABA to glutamate in PV- and CCK-expressing interneurons in the medial prefrontal cortex by postnatal day 10. The switch was present for only a brief period during early postnatal development, observed in male and female mice at postnatal day 21 and reversed in both males and females by postnatal day 30. At postnatal day 90, male mice exhibited stereotyped repetitive behaviors and diminished social interaction while female mice exhibited only stereotyped repetitive behavior. Transfecting GAD1 in PV- and CCK-expressing interneurons at postnatal day 10, to reintroduce GABA expression, overrode the switch and prevented expression of autistic-like behavior. These findings point to an important role of neurotransmitter switching in mediating the environmental causes of autism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    嗅球是连续神经发生的独特部位,主要产生抑制性中间神经元,从出生开始并延伸到婴儿期和成年期的过程。这篇综述探讨了嗅球神经发生的特征,专注于颗粒细胞,数量最多的中间神经元,以及他们的年龄和成熟度如何影响他们的功能。成年出生的颗粒细胞,虽然不成熟,通过实现结构和功能突触变化,有助于嗅觉回路的经验依赖性可塑性。相比之下,生命早期出生的颗粒细胞构成了嗅球电路的基本要素,潜在地促进先天嗅觉信息处理。这些新生儿细胞对早期嗅觉记忆的影响及其对成人感知的影响,特别是在应对厌恶事件和对情绪障碍的易感性时,需要进一步调查。
    The olfactory bulb is a unique site of continuous neurogenesis, primarily generating inhibitory interneurons, a process that begins at birth and extends through infancy and adulthood. This review examines the characteristics of olfactory bulb neurogenesis, focusing on granule cells, the most numerous interneurons, and how their age and maturation affect their function. Adult-born granule cells, while immature, contribute to the experience-dependent plasticity of the olfactory circuit by enabling structural and functional synaptic changes. In contrast, granule cells born early in life form the foundational elements of the olfactory bulb circuit, potentially facilitating innate olfactory information processing. The implications of these neonatal cells on early life olfactory memory and their impact on adult perception, particularly in response to aversive events and susceptibility to emotional disorders, warrant further investigation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    婴儿期和青春期的不良经历对大脑有重要而持久的影响,是精神障碍的诱发因素,尤其是严重的抑郁症。这种影响在长期发展的地区尤为显著,比如前额叶皮层。该皮质区域的抑制性神经元被青春期应激(PPS)改变,尤其是雌性老鼠。在这项研究中,我们探索了雄性和雌性小鼠中丘脑的抑制回路是否受到PPS的影响。这个间脑结构,作为前额叶皮层,也完成了它的发展在出生后的生活和不利的经验的影响。PPS诱导的长期变化仅在成年雌性小鼠中发现。我们已经发现,PPS会增加抑郁样行为,并诱导丘脑网状核(TRN)的小白蛋白表达(PV)细胞发生变化。我们观察到TRN的体积减少,以及与调节PV+细胞可塑性和连通性的结构/分子相关的参数:神经周网,PV+神经元周围的细胞结构,和多唾液酸化形式的神经细胞粘附分子(PSA-NCAM)。GluN1的表达,而不是GluN2C的表达,PPS后TRN中NMDA受体亚基增加。在外侧丘脑后核的TRN神经元的突触输出中也观察到PV斑点的荧光强度增加。这些结果表明,丘脑的抑制回路,和前额叶皮层一样,在早期生活中容易受到厌恶经历的影响,尤其是女性。这种脆弱性可能与TRN的长期发展有关,并可能导致精神疾病的发展。
    Adverse experiences during infancy and adolescence have an important and enduring effect on the brain and are predisposing factors for mental disorders, particularly major depression. This impact is particularly notable in regions with protracted development, such as the prefrontal cortex. The inhibitory neurons of this cortical region are altered by peripubertal stress (PPS), particularly in female mice. In this study we have explored whether the inhibitory circuits of the thalamus are impacted by PPS in male and female mice. This diencephalic structure, as the prefrontal cortex, also completes its development during postnatal life and is affected by adverse experiences. The long-term changes induced by PPS were exclusively found in adult female mice. We have found that PPS increases depressive-like behavior and induces changes in parvalbumin-expressing (PV+) cells of the thalamic reticular nucleus (TRN). We observed reductions in the volume of the TRN, together with those of parameters related to structures/molecules that regulate the plasticity and connectivity of PV+ cells: perineuronal nets, matricellular structures surrounding PV+ neurons, and the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). The expression of the GluN1, but not of GluN2C, NMDA receptor subunit was augmented in the TRN after PPS. An increase in the fluorescence intensity of PV+ puncta was also observed in the synaptic output of TRN neurons in the lateral posterior thalamic nucleus. These results demonstrate that the inhibitory circuits of the thalamus, as those of the prefrontal cortex, are vulnerable to the effects of aversive experiences during early life, particularly in females. This vulnerability is probably related to the protracted development of the TRN and might contribute to the development of psychiatric disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    任务切换是一种基本的认知能力,可以使动物更新对当前规则或上下文的了解。检测预测事件和观察事件之间的差异对于此过程至关重要。然而,人们对大脑如何计算认知预测错误以及神经预测错误信号是否与任务转换行为有因果关系知之甚少。在这里,我们训练小鼠使用预测误差来切换,在一次审判中,在使用两个不同的规则响应相同的刺激之间。光遗传沉默和非沉默,与宽视场和双光子钙成像一起显示,前扣带皮质(ACC)是这种快速任务切换所特别需要的,但只有当它表现出神经预测误差信号时。这些预测误差信号与投影目标相关,并且在成功的行为转变之前更大。全光学方法揭示了成功的预测误差计算所需的抑制性中间神经元电路。这些结果揭示了一种用于计算预测误差和在不同认知状态之间转换的电路机制。
    Task-switching is a fundamental cognitive ability that allows animals to update their knowledge of current rules or contexts. Detecting discrepancies between predicted and observed events is essential for this process. However, little is known about how the brain computes cognitive prediction-errors and whether neural prediction-error signals are causally related to task-switching behaviours. Here we trained mice to use a prediction-error to switch, in a single trial, between responding to the same stimuli using two distinct rules. Optogenetic silencing and un-silencing, together with widefield and two-photon calcium imaging revealed that the anterior cingulate cortex (ACC) was specifically required for this rapid task-switching, but only when it exhibited neural prediction-error signals. These prediction-error signals were projection-target dependent and were larger preceding successful behavioural transitions. An all-optical approach revealed a disinhibitory interneuron circuit required for successful prediction-error computation. These results reveal a circuit mechanism for computing prediction-errors and transitioning between distinct cognitive states.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    内侧前额叶皮质(mPFC)在调节工作记忆中起着举足轻重的作用,执行功能,和自我调节行为。mPFC电路的功能障碍是包括精神分裂症在内的几种神经精神疾病的特征。抑郁症,和创伤后应激障碍。慢性应激(CS)被广泛认为是这些疾病发作的主要触发因素。尽管有证据表明CS暴露后mPFC电路的突触功能障碍,目前尚不清楚下边缘区(IL)和前边缘区(PL)皮质中不同的神经元群体在突触抑制-兴奋平衡(I/E比)方面是如何受到影响的.这里,使用神经蛋白质组学分析和全细胞膜片钳记录在锥体神经元和小白蛋白中间神经元(PV)内的PL和IL皮层,我们检查了慢性不可预测的应激21天后的突触变化,在雄性小鼠中。我们的结果揭示了CS对PL-和IL-锥体神经元的不同影响,导致两个子区域的I/E比增加,但通过不同的机制:CS增加PL中的抑制性突触驱动,同时减少IL中的兴奋性突触驱动。值得注意的是,CS暴露后,PV中间神经元的I/E比以及兴奋性和抑制性突触驱动在PL和IL回路中均不受影响。这些发现为CS对前额叶皮层电路的影响提供了新的机制见解,并支持了应激引起的mPFC功能减退的假设。在揭示慢性应激对内侧前额叶皮层的下边缘和前边缘亚区域内的突触I/E比的不同影响时,这项研究不仅加深了我们对压力的复杂神经生物学反应的理解,而且强调了神经精神疾病病理生理学中的一个重要因素。锥体神经元I/E比的差异调制,再加上小白蛋白中间神经元对这些亚区域内慢性应激的复原力,强调了前额叶电路的细微差别。这些发现为压力相关的神经精神疾病提供了重要的机械见解。此外,我们正在向研究界发布一个全面的蛋白质组学数据集,为未来的研究提供了宝贵的资源,旨在探索压力的分子基础及其对神经回路的影响。
    The medial prefrontal cortex (mPFC) plays a pivotal role in regulating working memory, executive function, and self-regulatory behaviors. Dysfunction in the mPFC circuits is a characteristic feature of several neuropsychiatric disorders including schizophrenia, depression, and post-traumatic stress disorder. Chronic stress (CS) is widely recognized as a major triggering factor for the onset of these disorders. Although evidence suggests synaptic dysfunction in mPFC circuits following CS exposure, it remains unclear how different neuronal populations in the infralimbic (IL) and prelimbic (PL) cortices are affected in terms of synaptic inhibition/excitation balance (I/E ratio). Here, using neuroproteomic analysis and whole-cell patch-clamp recordings in pyramidal neurons (PNs) and parvalbumin (PV) interneurons within the PL and IL cortices, we examined the synaptic changes after 21 d of chronic unpredictable stress, in male mice. Our results reveal distinct impacts of CS on PL and IL PNs, resulting in an increased I/E ratio in both subregions but through different mechanisms: CS increases inhibitory synaptic drive in the PL while decreasing excitatory synaptic drive in the IL. Notably, the I/E ratio and excitatory and inhibitory synaptic drive of PV interneurons remained unaffected in both PL and IL circuits following CS exposure. These findings offer novel mechanistic insights into the influence of CS on mPFC circuits and support the hypothesis of stress-induced mPFC hypofunction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号