inhibitory interneurons

抑制性中间神经元
  • 文章类型: Journal Article
    背外侧膝状核(dLGN)中的抑制性中间神经元位于成像视觉通路的第一个中央突触,但对它们的功能知之甚少。鉴于他们的解剖结构,它们被认为是多路复用器,沿着它们的树突整合许多不同的视网膜通道。这里,使用有针对性的单细胞启动狂犬病追踪,我们发现小鼠dLGN中间神经元表现出与丘脑皮质神经元相似的视网膜输入特化程度.有些在解剖学上高度专业化,例如,朝向运动选择信息。在体内进行的双光子钙成像显示中间神经元在功能上也是特化的。在缺乏视网膜水平方向选择性的小鼠中,中间神经元的水平方向选择性降低,表明输入和功能专业化之间存在因果关系。功能专业化不仅存在于中间神经元的躯体中,而且还延伸到它们的树突中。总之,抑制性中间神经元全局显示出不同的视觉特征,这些视觉特征反映了它们的视网膜输入专业化,非常适合执行特征选择性抑制。
    Inhibitory interneurons in the dorsolateral geniculate nucleus (dLGN) are situated at the first central synapse of the image-forming visual pathway, but little is known about their function. Given their anatomy, they are expected to be multiplexors, integrating many different retinal channels along their dendrites. Here, using targeted single-cell-initiated rabies tracing, we found that mouse dLGN interneurons exhibit a degree of retinal input specialization similar to thalamocortical neurons. Some are anatomically highly specialized, for example, toward motion-selective information. Two-photon calcium imaging performed in vivo revealed that interneurons are also functionally specialized. In mice lacking retinal horizontal direction selectivity, horizontal direction selectivity is reduced in interneurons, suggesting a causal link between input and functional specialization. Functional specialization is not only present at interneuron somata but also extends into their dendrites. Altogether, inhibitory interneurons globally display distinct visual features which reflect their retinal input specialization and are ideally suited to perform feature-selective inhibition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Hadler及其同事最近的一项研究发现了离体海马切片制备中伽马振荡的一种新形式的可塑性,他们称之为“伽马增强”。我们讨论了这种可塑性形式的潜在细胞机制及其功能和翻译意义。
    A recent study by Hadler and colleagues uncovered a novel form of plasticity of gamma oscillations in an ex vivo hippocampal slice preparation which they term \'gamma potentiation\'. We discuss the potential cellular mechanisms of this form of plasticity and its functional and translational implications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    抑制性中间神经元(INs)的可塑性在皮质微电路的组织和维持中起着重要作用。鉴于许多不同的IN类型,在兴奋性到兴奋性(E→I)时,突触类型特定的可塑性学习规则具有更大的多样性,I→E,我→我突触。I→I突触在皮质回路中起着关键的去抑制作用。因为它们通常以其他INs为目标,血管活性肠肽(VIP)INs通常表现为I→I→E去抑制,上调附近兴奋性神经元的活动。因此,VIPIN失调可导致神经病理学如癫痫。尽管VIPINs具有重要的活动调节作用,它们的长期可塑性尚未被描述。因此,我们在遗传定义的VIPIN的输入和输出处表征了尖峰时间依赖性可塑性(STDP)的现象学。使用全细胞记录的组合,双光子显微镜,光遗传学,我们在第2/3层(L2/3)VIPIN输出上探索了I→ISTDP到L5Martinotti细胞(MC)和篮状细胞(BC)。我们发现VIPIN→MC突触经历了突触前表达的因果长期抑郁(LTD)。VIPIN→BC连接,然而,没有经历任何可检测的可塑性。相反,利用细胞外刺激,我们探索了输入VIPINs时的E→ISTDP,这些输入揭示了因果和绝经期的长期增强(LTP)。一起来看,我们的结果表明VIPIN在其输入和输出处具有突触类型特定的学习规则.这表明在长期可塑性中利用VIP来控制活动相关的神经病理学如癫痫的可能性。
    The plasticity of inhibitory interneurons (INs) plays an important role in the organization and maintenance of cortical microcircuits. Given the many different IN types, there is an even greater diversity in synapse-type-specific plasticity learning rules at excitatory to excitatory (E→I), I→E, and I→I synapses. I→I synapses play a key disinhibitory role in cortical circuits. Because they typically target other INs, vasoactive intestinal peptide (VIP) INs are often featured in I→I→E disinhibition, which upregulates activity in nearby excitatory neurons. VIP IN dysregulation may thus lead to neuropathologies such as epilepsy. In spite of the important activity regulatory role of VIP INs, their long-term plasticity has not been described. Therefore, we characterized the phenomenology of spike-timing-dependent plasticity (STDP) at inputs and outputs of genetically defined VIP INs. Using a combination of whole-cell recording, 2-photon microscopy, and optogenetics, we explored I→I STDP at layer 2/3 (L2/3) VIP IN outputs onto L5 Martinotti cells (MCs) and basket cells (BCs). We found that VIP IN→MC synapses underwent causal long-term depression (LTD) that was presynaptically expressed. VIP IN→BC connections, however, did not undergo any detectable plasticity. Conversely, using extracellular stimulation, we explored E→I STDP at inputs to VIP INs which revealed long-term potentiation (LTP) for both causal and acausal timings. Taken together, our results demonstrate that VIP INs possess synapse-type-specific learning rules at their inputs and outputs. This suggests the possibility of harnessing VIP IN long-term plasticity to control activity-related neuropathologies such as epilepsy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    GABA能神经元占皮质神经元群体的10-15%,但对皮质回路中的信息流具有强大的控制作用。新皮质中最大的GABA能类别由表达小白蛋白的快速尖峰神经元代表,对它们的突触后靶标提供强大的体细胞抑制作用。最近,与感觉和运动区域相比,小清蛋白中间神经元的密度在小鼠皮层的关联区域中更低。基于这些量化的建模工作将小白蛋白中间神经元的低密度与关联皮质的特定计算联系起来。然而,尚不清楚联合皮质的总GABA能群体是否较小,或者另一种GABA能类型是否可以补偿小白蛋白中间神经元的低密度.在本研究中,我们结合神经解剖学研究了这些假设,小鼠遗传学和神经生理学。我们发现,关联区域的GABA能人群与主要感觉区域的GABA能人群相当,它富含不表达小清蛋白的快速尖峰神经元,并且没有被先前的定量所解释。我们开发了一种交叉病毒策略,以证明快速尖峰神经元的种群在皮质区域之间具有可比性。我们的结果提供了快速加标GABA能神经元密度的量化,并提供了新的生物学约束来完善当前的皮质计算模型。
    GABAergic neurons represent 10-15% of the neuronal population of the cortex but exert a powerful control over information flow in cortical circuits. The largest GABAergic class in the neocortex is represented by the parvalbumin-expressing fast-spiking neurons, which provide powerful somatic inhibition to their postsynaptic targets. Recently, the density of parvalbumin interneurons has been shown to be lower in associative areas of the mouse cortex as compared with sensory and motor areas. Modelling work based on these quantifications linked the low-density of parvalbumin interneurons with specific computations of associative cortices. However, it is still unknown whether the total GABAergic population of association cortices is smaller or whether another GABAergic type can compensate for the low density of parvalbumin interneurons. In the present study, we investigated these hypotheses using a combination of neuroanatomy, mouse genetics and neurophysiology. We found that the GABAergic population of association areas is comparable with that of primary sensory areas, and it is enriched of fast-spiking neurons that do not express parvalbumin and were not accounted for by previous quantifications. We developed an intersectional viral strategy to demonstrate that the population of fast-spiking neurons is comparable across cortical regions. Our results provide quantifications of the density of fast-spiking GABAergic neurons and offers new biological constrains to refine current models of cortical computations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脊髓背角(DH)中的抑制性中间神经元在调节无害和有害信息中起主要作用。抑制性突触传递的减少被认为有助于触摸诱发的疼痛(异常性疼痛)的发展,神经性疼痛的常见症状。然而,尚不完全了解DH中的抑制性神经元如何调节周围神经元的感觉反应并调节感觉传递。在这项研究中,我们建立了一种新的实验方法,通过结合细胞外记录和光遗传学来分析光遗传学诱导的去抑制状态下DH神经元的时间活性。我们研究了DH抑制性神经元的特异性和时间限制性功能障碍如何影响皮肤机械刺激引起的脊髓神经元活动。在行为实验中,DH抑制性神经元的特异性和时间限制性脊髓光遗传学抑制诱导的机械超敏反应。此外,这种操作增强了宽动态范围(WDR)神经元的机械响应,这对疼痛传播很重要,响应刷子和vonFrey刺激,但不响应伤害性捏刺激。此外,我们检查了神经性疼痛药物,米罗加巴林,抑制了这些光遗传学诱导的异常疼痛反应。我们发现米罗加巴林治疗减轻了WDR神经元的异常放电反应和机械超敏反应。这些结果表明,脊髓抑制性神经元活动的时间限制和特异性降低促进了WDR神经元的机械反应,导致神经性机械性异常性疼痛,可被米罗加巴林抑制。我们的光遗传学方法可用于开发神经性疼痛的新疗法。
    Inhibitory interneurons in the spinal dorsal horn (DH) play a major role in regulating innocuous and noxious information. Reduction in inhibitory synaptic transmission is thought to contribute to the development of touch-evoked pain (allodynia), a common symptom of neuropathic pain. However, it is not fully understood how inhibitory neurons in the DH regulate sensory responses in surrounding neurons and modulate sensory transmission. In this study, we established a novel experimental method to analyze temporal activity of DH neurons during the optogenetically induced disinhibition state by combining extracellular recording and optogenetics. We investigated how specific and temporally restricted dysfunction of DH inhibitory neurons affected spinal neuronal activities evoked by cutaneous mechanical stimulation. In behavioral experiments, the specific and temporally restricted spinal optogenetic suppression of DH inhibitory neurons induced mechanical hypersensitivity. Furthermore, this manipulation enhanced the mechanical responses of wide dynamic range (WDR) neurons, which are important for pain transmission, in response to brush and von Frey stimulation but not in response to nociceptive pinch stimulation. In addition, we examined whether a neuropathic pain medication, mirogabalin, suppressed these optogenetically induced abnormal pain responses. We found that mirogabalin treatment attenuated the abnormal firing responses of WDR neurons and mechanical hypersensitivity. These results suggest that temporally restricted and specific reduction of spinal inhibitory neuronal activity facilitates the mechanical responses of WDR neurons, resulting in neuropathic-like mechanical allodynia which can be suppressed by mirogabalin. Our optogenetic methods could be useful for developing novel therapeutics for neuropathic pain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    放射状神经胶质(RG)的发育对于大脑皮层的生长和组织至关重要。在人类中,外放射状神经胶质(oRG)亚型扩展并产生不同的神经元和神经胶质。然而,调节ORG分化的机制尚不清楚。ORG细胞在神经发生过程中表达白血病抑制因子(LIF)受体,与干细胞自我更新的作用相一致,LIF扰动影响皮质组织和类器官中的oRG增殖。令人惊讶的是,LIF处理还增加皮质培养物中抑制性中间神经元(INs)的产生。比较转录组学分析确定,增强的IN群体类似于尾神经节隆起中产生的IN。为了评估IN是否可能来自ORG,我们分离了原代oRG细胞,并用LIF培养。我们观察到在LIF处理后从oRG细胞产生INs和IN丰度的增加。我们的观察表明,LIF信号调节oRG细胞产生INs的能力。
    Radial glial (RG) development is essential for cerebral cortex growth and organization. In humans, the outer radial glia (oRG) subtype is expanded and gives rise to diverse neurons and glia. However, the mechanisms regulating oRG differentiation are unclear. oRG cells express leukemia-inhibitory factor (LIF) receptors during neurogenesis, and consistent with a role in stem cell self-renewal, LIF perturbation impacts oRG proliferation in cortical tissue and organoids. Surprisingly, LIF treatment also increases the production of inhibitory interneurons (INs) in cortical cultures. Comparative transcriptomic analysis identifies that the enhanced IN population resembles INs produced in the caudal ganglionic eminence. To evaluate whether INs could arise from oRGs, we isolated primary oRG cells and cultured them with LIF. We observed the production of INs from oRG cells and an increase in IN abundance following LIF treatment. Our observations suggest that LIF signaling regulates the capacity of oRG cells to generate INs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    人脑的功能特性出现了,在某种程度上,来自大脑皮层模式的各种细胞类型。皮质片可以大致分为不同的网络,它们进一步嵌入到处理流中,或渐变,从单峰系统延伸到更高阶的协会领土。这里,使用艾伦人脑图集的转录数据,我们证明了估算的细胞类型分布在空间上与皮质的功能组织耦合,通过功能磁共振成像估计。皮质细胞轮廓遵循功能梯度的宏观组织以及相关的大规模网络。不同的细胞指纹在网络中很明显,并且在事后细胞类型分布上训练的分类器能够预测皮质组织样本的功能网络效度。这些数据表明,皮质片的体内组织反映在其细胞组成的空间变异性中。
    The functional properties of the human brain arise, in part, from the vast assortment of cell types that pattern the cortex. The cortical sheet can be broadly divided into distinct networks, which are further embedded into processing streams, or gradients, that extend from unimodal systems through higher-order association territories. Here, using transcriptional data from the Allen Human Brain Atlas, we demonstrate that imputed cell type distributions are spatially coupled to the functional organization of cortex, as estimated through fMRI. Cortical cellular profiles follow the macro-scale organization of the functional gradients as well as the associated large-scale networks. Distinct cellular fingerprints were evident across networks, and a classifier trained on post-mortem cell-type distributions was able to predict the functional network allegiance of cortical tissue samples. These data indicate that the in vivo organization of the cortical sheet is reflected in the spatial variability of its cellular composition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    表达小白蛋白(PV)的抑制性中间神经元在整个大脑中起关键作用。它们的快速尖峰使它们能够在毫秒的时间尺度上控制电路动态,它们通过不同的兴奋途径激活的时机对这些功能至关重要。我们使用遗传编码的混合电压传感器在成年小鼠的初级体感桶形皮层(BC)中以亚毫秒精度成像PV中间神经元电压变化。电刺激引起的去极化,其潜伏期随着与刺激电极的距离而增加,让我们能够确定传导速度.皮质层之间的反应扩散产生了层间传导速度,层之间的反应扩散产生了不同层的层内传导速度。速度范围为74至473μm/ms,具体取决于轨迹;层间传导比层内传导快71%。因此,列内的计算比列之间的计算更快。BC集成了丘脑和皮质内输入,以实现纹理辨别和感觉调谐等功能。层间和层间PV中间神经元激活之间的时间差异可能会影响这些功能。PV中间神经元的电压成像揭示了皮层电路内信号动力学的差异。这种方法提供了一个独特的机会来研究轴突群体中基于其靶向特异性的传导。
    Inhibitory interneurons expressing parvalbumin (PV) play critical roles throughout the brain. Their rapid spiking enables them to control circuit dynamics on a millisecond time scale, and the timing of their activation by different excitatory pathways is critical to these functions. We used a genetically encoded hybrid voltage sensor to image PV interneuron voltage changes with sub-millisecond precision in primary somatosensory barrel cortex (BC) of adult mice. Electrical stimulation evoked depolarizations with a latency that increased with distance from the stimulating electrode, allowing us to determine conduction velocity. Spread of responses between cortical layers yielded an interlaminar conduction velocity and spread within layers yielded intralaminar conduction velocities in different layers. Velocities ranged from 74 to 473 μm/ms depending on trajectory; interlaminar conduction was 71% faster than intralaminar conduction. Thus, computations within columns are more rapid than between columns. The BC integrates thalamic and intracortical input for functions such as texture discrimination and sensory tuning. Timing differences between intra- and interlaminar PV interneuron activation could impact these functions. Imaging of voltage in PV interneurons reveals differences in signaling dynamics within cortical circuitry. This approach offers a unique opportunity to investigate conduction in populations of axons based on their targeting specificity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    根据我们之前的研究,抑制性中间神经元功能的丧失有助于慢性偏头痛(CM)的中枢致敏。突触可塑性是中枢敏化发生的重要基础。然而,中间神经元介导的抑制的下降是否通过调节CM的突触可塑性来促进中枢敏化尚不清楚.因此,本研究旨在探讨中间神经元介导的抑制在CM突触可塑性发育中的作用。
    通过反复注入硬膜消炎汤(IS)7天建立大鼠CM模型,然后评估抑制性中间神经元的功能。脑室内注射巴氯芬[一种γ-氨基丁酸B型受体(GABABR)激动剂]或H89[一种蛋白激酶A(PKA)抑制剂)后,进行行为测试。通过测定突触相关蛋白突触后密度蛋白95(PSD95)的水平来研究突触可塑性的变化,突触素(Syp)和突触素-1(Syt-1)];通过透射电子显微镜(TEM)评估突触超微结构;并通过高尔基Cox染色确定突触棘的密度。通过测量降钙素基因相关肽(CGRP)评估中枢致敏,脑源性神经营养因子(BDNF),c-Fos和P物质(SP)水平。最后,我们评估了PKA/Fyn激酶(Fyn)/酪氨酸磷酸化NR2B(pNR2B)通路和下游钙-钙调蛋白依赖性激酶II(CaMKII)/c-AMP反应元件结合蛋白(pCREB)信号传导.
    我们观察到抑制性中间神经元的功能障碍,发现GABABR的激活改善了CM诱导的痛觉过敏,抑制了突触相关蛋白水平的CM引起的升高和突触传递的增强,缓解了CM引发的中枢致敏相关蛋白水平的增加,并通过PKA/Fyn/pNR2B途径抑制CaMKII/pCREB信号传导。PKA的抑制抑制了CM诱导的Fyn/pNR2B信号的激活。
    这些数据表明,抑制性中间神经元的功能障碍通过调节CM大鼠导水管周围灰质(PAG)中的GABABR/PKA/Fyn/pNR2B途径的突触可塑性而导致中枢敏化。阻断GABABR-pNR2B信号可能通过调节中枢敏化中的突触可塑性而对CM治疗的效果产生积极影响。
    UNASSIGNED: According to our previous study, the loss of inhibitory interneuron function contributes to central sensitization in chronic migraine (CM). Synaptic plasticity is a vital basis for the occurrence of central sensitization. However, whether the decline in interneuron-mediated inhibition promotes central sensitization by regulating synaptic plasticity in CM remains unclear. Therefore, this study aims to explore the role of interneuron-mediated inhibition in the development of synaptic plasticity in CM.
    UNASSIGNED: A CM model was established in rats by repeated dural infusion of inflammatory soup (IS) for 7 days, and the function of inhibitory interneurons was then evaluated. After intraventricular injection of baclofen [a gamma-aminobutyric acid type B receptor (GABABR) agonist] or H89 [a protein kinase A (PKA) inhibitor), behavioral tests were performed. The changes in synaptic plasticity were investigated by determining the levels of the synapse-associated proteins postsynaptic density protein 95 (PSD95), synaptophysin (Syp) and synaptophysin-1(Syt-1)]; evaluating the synaptic ultrastructure by transmission electron microscopy (TEM); and determining the density of synaptic spines via Golgi-Cox staining. Central sensitization was evaluated by measuring calcitonin gene-related peptide (CGRP), brain-derived neurotrophic factor (BDNF), c-Fos and substance P (SP) levels. Finally, the PKA/Fyn kinase (Fyn)/tyrosine-phosphorylated NR2B (pNR2B) pathway and downstream calcium-calmodulin-dependent kinase II (CaMKII)/c-AMP-responsive element binding protein (pCREB) signaling were assessed.
    UNASSIGNED: We observed dysfunction of inhibitory interneurons, and found that activation of GABABR ameliorated CM-induced hyperalgesia, repressed the CM-evoked elevation of synapse-associated protein levels and enhancement of synaptic transmission, alleviated the CM-triggered increases in the levels of central sensitization-related proteins, and inhibited CaMKII/pCREB signaling via the PKA/Fyn/pNR2B pathway. The inhibition of PKA suppressed the CM-induced activation of Fyn/pNR2B signaling.
    UNASSIGNED: These data reveal that the dysfunction of inhibitory interneurons contributes to central sensitization by regulating synaptic plasticity through the GABABR/PKA/Fyn/pNR2B pathway in the periaqueductal gray (PAG) of CM rats. Blockade of GABABR-pNR2B signaling might have a positive influence on the effects of CM therapy by modulating synaptic plasticity in central sensitization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    大脑中的突触在基础突触传递和可塑性方面表现出细胞类型特异性差异。这里,我们评估了谷氨酸能突触组成的细胞类型特异性专业化,将Btbd11识别为抑制性中间神经元特异性,突触富集蛋白.Btbd11在物种中高度保守,并与核心突触后蛋白结合,包括psd-95.有趣的是,我们表明,当用Psd-95表达时,Btbd11可以经历液-液相分离,支持抑制性中间神经元突触中的谷氨酸能突触后密度以相位分离状态存在的观点。Btbd11的敲除降低了小白蛋白阳性中间神经元的谷氨酸能信号。Further,在体外和体内,Btbd11敲除会破坏网络活动。在行为层面,中间神经元的Btbd11敲除会改变探索行为,焦虑的措施,并在NMDA受体拮抗剂攻击后使小鼠对药理学诱导的活动过度敏感。我们的发现确定了一种细胞类型特异性机制,该机制支持抑制性中间神经元中的谷氨酸能突触功能,并对电路功能和动物行为产生影响。
    Synapses in the brain exhibit cell-type-specific differences in basal synaptic transmission and plasticity. Here, we evaluated cell-type-specific specializations in the composition of glutamatergic synapses, identifying Btbd11 as an inhibitory interneuron-specific, synapse-enriched protein. Btbd11 is highly conserved across species and binds to core postsynaptic proteins, including Psd-95. Intriguingly, we show that Btbd11 can undergo liquid-liquid phase separation when expressed with Psd-95, supporting the idea that the glutamatergic postsynaptic density in synapses in inhibitory interneurons exists in a phase-separated state. Knockout of Btbd11 decreased glutamatergic signaling onto parvalbumin-positive interneurons. Further, both in vitro and in vivo, Btbd11 knockout disrupts network activity. At the behavioral level, Btbd11 knockout from interneurons alters exploratory behavior, measures of anxiety, and sensitizes mice to pharmacologically induced hyperactivity following NMDA receptor antagonist challenge. Our findings identify a cell-type-specific mechanism that supports glutamatergic synapse function in inhibitory interneurons-with implications for circuit function and animal behavior.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号