iNOS inhibitor

  • 文章类型: Journal Article
    七种未被描述的黄酮类化合物,青霉烯类A-G,从海洋来源的真菌菌核青霉GZU-XW03-2中分离。通过光谱方法和电子圆二色性(ECD)计算建立了它们的结构。盘旋类A具有前所未有的高度氧化的6/7/6/5/5五环系统,具有独特的四氢呋喃[2,3-b]呋喃-2(3H)-一个基序。β-E类的稀有6(D)/5(E)稠环在天然产物中并不常见,和penisicmeroterpenoidE是剥去甲酯片段的伯克利酮类似物的第一个例子。在生物测定中,青霉烯类A和D抑制RAW264.7细胞中一氧化氮(NO)的产生,IC50值分别为26.60±1.15和8.79±1.22μM。此外,penisicmeroteroidD显着抑制促炎介质(COX-2,IL-1β和IL-6)的产生和iNOS酶的蛋白表达。
    Seven undescribed meroterpenoids, peniscmeroterpenoids A - G, were isolated from the marine-derived fungus Penicillium sclerotiorum GZU-XW03-2. Their structures were established by the spectroscopic methods and the electronic circular dichroism (ECD) calculations. Peniscmeroterpenoid A possessed an unprecedented and highly oxidized 6/7/6/5/5 pentacyclic system, featuring a unique tetrahydrofuro [2,3-b]furan-2(3H)-one motif. Peniscmeroterpenoids B - E owned rare 6(D)/5(E) fused rings were not common in natural products, and peniscmeroterpenoid E is the first example of a berkeleyone analogue stripped of the methyl ester fragment. In bioassays, peniscmeroterpenoids A and D inhibited the production of nitric oxide (NO) in RAW264.7 cells with IC50 values of 26.60 ± 1.15 and 8.79 ± 1.22 μM. Moreover, peniscmeroterpenoid D significantly suppressed the production of pro-inflammatory mediators (COX-2, IL-1β and IL-6) and the protein expression of the enzyme iNOS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    饮酒与肠道菌群失调有关,肠道通透性增加,内毒素血症,以及导致持续性全身炎症的级联反应,酒精性肝病,和其他疾病。对酒精的渴望及其后果取决于,除其他外,内源性大麻素系统。我们分析了中央与中央的相对作用。在小鼠中使用“两瓶”和“黑暗中饮酒”范式的外周大麻素CB1受体(CB1R)。全球作用的CB1R拮抗剂利莫那班和非脑渗透剂CB1R拮抗剂JD5037在全身注射时抑制自愿饮酒,但在脑室内注射时不会引起焦虑样行为并阻断CB1R诱导的体温过低和僵直。外周限制性杂合CB1R拮抗剂/iNOS抑制剂S-MRI-1867也可有效减少口服灌胃后的饮酒量,而其R对映体(CB1R无活性/iNOS抑制剂)则没有。两种MRI-1867对映异构体在抑制由肠通透性增加引起的酒精诱导的门静脉血内毒素浓度增加方面同样有效。我们得出的结论是,(i)外周CB1R的激活在促进酒精摄入中起着主导作用,(ii)MRI-1867的iNOS抑制功能有助于减轻酒精引起的内毒素血症增加。
    Alcohol consumption is associated with gut dysbiosis, increased intestinal permeability, endotoxemia, and a cascade that leads to persistent systemic inflammation, alcoholic liver disease, and other ailments. Craving for alcohol and its consequences depends, among other things, on the endocannabinoid system. We have analyzed the relative role of central vs. peripheral cannabinoid CB1 receptors (CB1R) using a \"two-bottle\" as well as a \"drinking in the dark\" paradigm in mice. The globally acting CB1R antagonist rimonabant and the non-brain penetrant CB1R antagonist JD5037 inhibited voluntary alcohol intake upon systemic but not upon intracerebroventricular administration in doses that elicited anxiogenic-like behavior and blocked CB1R-induced hypothermia and catalepsy. The peripherally restricted hybrid CB1R antagonist/iNOS inhibitor S-MRI-1867 was also effective in reducing alcohol consumption after oral gavage, while its R enantiomer (CB1R inactive/iNOS inhibitor) was not. The two MRI-1867 enantiomers were equally effective in inhibiting an alcohol-induced increase in portal blood endotoxin concentration that was caused by increased gut permeability. We conclude that (i) activation of peripheral CB1R plays a dominant role in promoting alcohol intake and (ii) the iNOS inhibitory function of MRI-1867 helps in mitigating the alcohol-induced increase in endotoxemia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Nine previously undescribed butyrolactone and sesquiterpene derivatives, named cyclopentanone A (1), subamolides F and G (2 and 3), secosubamolide F (4), rupestonic acids J - L (5-7), linderaguaianols A and B (8 and 9), together with six known ones 10-15 were isolated from the roots of Lindera glauca. Their structures, including their absolute configurations were elucidated by extensive spectroscopic analysis, quantum chemical calculations, and Mo2(AcO)4-induced circular dichroism. Compound 1 that possessed a unique five-membered cyclopentane skeleton with a side chain was rarely found from natural sources. The biogenetic pathway for 1-4 was postulated. Secosubamolide F (4) inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-activated RAW264.7 cells with IC50 value of 1.73 ± 0.18 μM and also significantly suppressed the production of iNOS. The binding interactions between 4 and iNOS were investigated using docking analyses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    COVID-19 (SARS-CoV-2) causes multiple inflammatory complications, resulting not only in severe lung inflammation but also harm to other organs. Although the current focus is on the management of acute COVID-19, there is growing concern about long-term effects of COVID-19 (Long Covid), such as fibroproliferative changes in the lung, heart and kidney. Therefore, the identification of therapeutic targets not only for the management of acute COVID-19 but also for preventing Long Covid are needed, and would mitigate against long-lasting health burden and economic costs, in addition to saving lives. COVID-19 induces pathological changes via multiple pathways, which could be targeted simultaneously for optimal effect. We discuss the potential pathologic function of increased activity of the endocannabinoid/CB1 receptor system and inducible NO synthase (iNOS). We advocate a polypharmacology approach, wherein a single chemical entity simultaneously interacts with CB1 receptors and iNOS causing inhibition, as a potential therapeutic strategy for COVID-19-related health complications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Neurodegenerative diseases are associated with increased levels of nitric oxide (NO) mainly produced by microglial cells through inducible nitric oxide synthase (iNOS) whose expression is induced by inflammatory stimuli. NO can both exert cytotoxic functions and induce a metabolic switch by inhibiting oxidative phosphorylation and upregulating glycolytic flux. Here, we investigated whether two newly synthesized acetamidine based iNOS inhibitors, namely CM292 and CM544, could inhibit lipopolysaccharide (LPS)-induced BV2 microglial cell activation, focusing on both inflammatory and metabolic profiles. We found that CM292 and CM544, without affecting iNOS protein expression, reduced NO production and reverted LPS-induced inflammatory and cytotoxic response. Furthermore, in the presence of the inflammatory stimulus, both the inhibitors increased the expression of glycolytic enzymes. In particular, CM292 significantly reduced nuclear accumulation of pyruvate kinase M2, increased mitochondrial membrane potential and oxygen consumption rate, and augmented the expression of pyruvate dehydrogenase, pointing to a metabolic switch toward oxidative phosphorylation. These data confirm the role played by NO in the connection between cell bioenergetics profile and inflammation, and suggest the potential usefulness of iNOS inhibitors in redirecting microglia from detrimental to pro-regenerative phenotype.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Accumulating evidence suggests that inflammation has a key role in the pathogenesis of osteoarthritis (OA). Nitric oxide (NO) has been established as one of the major inflammatory mediators in OA and drives many pathological changes during the development and progression of OA. Excessive production of NO in chondrocytes promotes cartilage destruction and cellular injury. The synthesis of NO in chondrocytes is catalyzed by inducible NO synthase (iNOS), which is thereby an attractive therapeutic target for the treatment of OA. A number of direct and indirect iNOS inhibitors, bioactive compounds, and plant-derived small molecules have been shown to exhibit chondroprotective effects by suppressing the expression of iNOS. Many of these iNOS inhibitors hold promise for the development of new, disease-modifying therapies for OA; however, attempts to demonstrate their success in clinical trials are not yet successful. Many plant extracts and plant-derived small molecules have also shown promise in animal models of OA, though further studies are needed in human clinical trials to confirm their therapeutic potential. In this review, we discuss the role of iNOS in OA pathology and the effects of various iNOS inhibitors in OA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Nitric oxide synthases (NOS) are a family of isoforms, which generate nitric oxide (NO). NO is one of the smallest molecules in nature and acts mainly as a potent vasodilator. It participates in various biological processes ranging from physiological to pathological conditions. Inducible NOS (iNOS, NOS2) is a calcium-independent and inducible isoform. Despite high iNOS expression in many tumors, the role of iNOS is still unclear and complex with both enhancing and prohibiting actions in tumorigenesis. Nature presents a broad variety of natural stimulators and inhibitors, which may either promote or inhibit iNOS response. In the present review, we give an overview of iNOS-modulating agents with a special focus on both natural and synthetic molecules and their effects in related biological processes. The role of iNOS in physiological and pathological conditions is also discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    A series of clovamide analogues, namely, 1a-13a and 1b-13b, was synthesized and evaluated for their anti-neuroinflammatory activities using BV-2 microglia cells. Among these compounds, six (1b, 4b-8b) showed NO inhibition with no or weak cytotoxicity (CC50 > 100 μM), especially 4b, and showed an IC50 value of 2.67 μM. Enzyme activity and docking assay revealed that the six compounds, especially 4b, target inducible NO synthase (iNOS) and exhibit potent inhibitory effects on iNOS with IC50 values ranging from 1.01 μM to 29.23 μM 4b significantly suppressed the expression of pro-inflammatory cytokines in lipopolysaccharide-stimulated cells. Notably, the oral administration of 4b remarkably improved dyskinesia, reduced the expression of glial fibrillary acidic protein (GFAP)-a marker of neuroinflammation, and increased tyrosine hydroxylase-positive cells in 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine-induced Parkinson\'s disease (PD) mouse models. These observations demonstrated that 4b is an effective and promising candidate for PD therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    OBJECTIVE: Shock wave lithotripsy treatment (SWT) is not completely free from side effects; one of the accused mechanisms for renal injury during SWT is oxygen- and nitrogen-derived free radical productions. Therefore, we aimed to evaluate the effect of inhibition of nitric oxide (NO) production by N-[3(aminomethyl) benzyl) acetamidine] (1400W), highly selective inducible nitric oxide synthase (iNOS) inhibitor, at SWT-induced kidney damage.
    METHODS: Twenty-four rats those underwent right nephrectomy procedure were divided equally into three groups as control, SWT, and SWT + 1400W. 1400W was administered at a dose of 10 mg/kg at 2 h prior to SWT procedure and at the beginning of SWT procedure via intraperitoneal route and continued daily for consecutive 3 days. At the end of the fourth day, animals were killed via decapitation and trunk blood and the left kidneys were taken for biochemical and histopathologic evaluation.
    RESULTS: SWT caused renal tubular damage and increased lipid peroxidation and antioxidant enzyme activities and SWT also significantly increased nitro-oxidative products. Inhibition of iNOS via administration of 1400W ameliorated renal injury and decreased tissue lipid peroxidation (malondialdehyde), superoxide dismutase, glutathione peroxidase and nitrite/nitrate levels (NOx). In addition, it was seen that histolopathological changes were attenuated in the SWT + 1400W group when compared to SWT group.
    CONCLUSIONS: SWT-induced renal injury might be due to excessive production of oxygen free radicals and NO production. Inhibition of iNOS attenuates renal injury following SWT treatment. It can be concluded that iNOS inhibitors or peroxynitrite scavengers might be used to protect the kidneys against SWT-induced morphological and functional injuries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Inducible Nitric Oxide Synthase (iNOS) has been involved in a variety of diseases, and thus it is interesting to discover and optimize new iNOS inhibitors. In previous studies, a series of benzimidazole-quinolinone derivatives with high inhibitory activity against human iNOS were discovered. In this work, three-dimensional quantitative structure-activity relationships (3D-QSAR), molecular docking and molecular dynamics (MD) simulation approaches were applied to investigate the functionalities of active molecular interaction between these active ligands and iNOS. A QSAR model with R(2) of 0.9356, Q(2) of 0.8373 and Pearson-R value of 0.9406 was constructed, which presents a good predictive ability in both internal and external validation. Furthermore, a combined analysis incorporating the obtained model and the MD results indicates: (1) compounds with the proper-size hydrophobic substituents at position 3 in ring-C (R(3) substituent), hydrophilic substituents near the X(6) of ring-D and hydrophilic or H-bond acceptor groups at position 2 in ring-B show enhanced biological activities; (2) Met368, Trp366, Gly365, Tyr367, Phe363, Pro344, Gln257, Val346, Asn364, Met349, Thr370, Glu371 and Tyr485 are key amino acids in the active pocket, and activities of iNOS inhibitors are consistent with their capability to alter the position of these important residues, especially Glu371 and Thr370. The results provide a set of useful guidelines for the rational design of novel iNOS inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号