human accelerated regions

  • 文章类型: Journal Article
    关于非编码区在自闭症谱系障碍(ASD)的病因中的作用知之甚少。我们检查了三类非编码区域:人类加速区域(HARs),显示人类阳性选择的特征;实验验证的神经VISTA增强子(VE);和预测充当神经增强子(CNE)的保守区域。对>16,600个样本和>4,900个ASD先证者的靶向和全基因组分析显示,罕见,HARs中的遗传变体,VEs,CNE在父母共同血统的先证者中对ASD风险有很大贡献,丰富了隐性贡献,但适度贡献,如果有的话,在单纯形家庭结构中。我们在IL1RAPL1附近的HARs和OTX1和SIM1附近的VE中鉴定了多个患者变异,并显示它们改变了增强子活性。我们的结果暗示了人类进化和进化上保守的非编码区在ASD风险中,并提出了监管变化如何调节社会行为的潜在机制。
    Little is known about the role of non-coding regions in the etiology of autism spectrum disorder (ASD). We examined three classes of non-coding regions: human accelerated regions (HARs), which show signatures of positive selection in humans; experimentally validated neural VISTA enhancers (VEs); and conserved regions predicted to act as neural enhancers (CNEs). Targeted and whole-genome analysis of >16,600 samples and >4,900 ASD probands revealed that likely recessive, rare, inherited variants in HARs, VEs, and CNEs substantially contribute to ASD risk in probands whose parents share ancestry, which enriches for recessive contributions, but modestly contribute, if at all, in simplex family structures. We identified multiple patient variants in HARs near IL1RAPL1 and in VEs near OTX1 and SIM1 and showed that they change enhancer activity. Our results implicate both human-evolved and evolutionarily conserved non-coding regions in ASD risk and suggest potential mechanisms of how regulatory changes can modulate social behavior.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    额颞叶变性(FTLD),特定大脑区域的病理性蛋白质聚集与人类专门的社交情感和语言功能的下降有关。在大多数患者中,疾病蛋白聚集体含有TDP-43(FTLD-TDP)或tau(FTLD-tau)。这里,我们探讨了FTLD相关的区域变性模式是否与人类加速区(HARs)的区域基因表达有关,在最近的人类进化过程中经历了正选择的保守序列。为此,我们使用FTLD患者的结构神经成像和对照的人脑区域转录组数据来鉴定在FTLD靶向脑区表达的基因.然后,我们整合了灵长类动物的比较基因组数据,以检验我们的假设,即FTLD靶向与最近进化的基因表达水平相关的大脑区域。此外,我们询问当TDP-43功能受损时,其表达与FTLD萎缩相关的基因是否富集了进行隐秘剪接的基因.我们发现FTLD-TDP和FTLD-tau亚型靶向具有重叠和不同基因表达相关的大脑区域。突出了许多与神经调节功能相关的基因。对于HARs,FTLD萎缩相关基因强烈富集。与FTLD-tau中的萎缩相关基因相比,FTLD-TDP中的萎缩相关基因与TDP-43隐蔽剪接基因和具有更多TDP-43结合位点的基因显示出更大的重叠。富集了HAR基因的隐性剪接基因,反之亦然,但这种影响是由于基因长度的混杂影响。在个体患者水平进行的分析显示,在FTLD-TDP亚型中,HAR基因和假定的疾病发作区域内的潜在剪接基因的表达有所不同。
    In frontotemporal lobar degeneration (FTLD), pathological protein aggregation in specific brain regions is associated with declines in human-specialized social-emotional and language functions. In most patients, disease protein aggregates contain either TDP-43 (FTLD-TDP) or tau (FTLD-tau). Here, we explored whether FTLD-associated regional degeneration patterns relate to regional gene expression of human accelerated regions (HARs), conserved sequences that have undergone positive selection during recent human evolution. To this end, we used structural neuroimaging from patients with FTLD and human brain regional transcriptomic data from controls to identify genes expressed in FTLD-targeted brain regions. We then integrated primate comparative genomic data to test our hypothesis that FTLD targets brain regions linked to expression levels of recently evolved genes. In addition, we asked whether genes whose expression correlates with FTLD atrophy are enriched for genes that undergo cryptic splicing when TDP-43 function is impaired. We found that FTLD-TDP and FTLD-tau subtypes target brain regions with overlapping and distinct gene expression correlates, highlighting many genes linked to neuromodulatory functions. FTLD atrophy-correlated genes were strongly enriched for HARs. Atrophy-correlated genes in FTLD-TDP showed greater overlap with TDP-43 cryptic splicing genes and genes with more numerous TDP-43 binding sites compared with atrophy-correlated genes in FTLD-tau. Cryptic splicing genes were enriched for HAR genes, and vice versa, but this effect was due to the confounding influence of gene length. Analyses performed at the individual-patient level revealed that the expression of HAR genes and cryptically spliced genes within putative regions of disease onset differed across FTLD-TDP subtypes. Overall, our findings suggest that FTLD targets brain regions that have undergone recent evolutionary specialization and provide intriguing potential leads regarding the transcriptomic basis for selective vulnerability in distinct FTLD molecular-anatomical subtypes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基因调控的变化与人类大脑皮层的扩张和神经发育障碍有关,可能通过改变神经祖细胞的增殖。然而,调节元件内的遗传变异对神经祖细胞的影响仍然不清楚。我们在人类神经干细胞(hNSC)中使用sgRNA-Cas9筛选来破坏在发育中的人类皮质中活跃的2,227个增强子中的10,674个基因和26,385个保守区域,并确定对增殖的影响。具有增殖表型的基因与神经发育障碍相关,并在特定的胎儿人脑神经祖细胞群体中显示出偏倚的表达。尽管增强子破坏总体上比基因破坏具有较弱的影响,我们确定了严重改变hNSC自我更新的增强子中断。人类加速区域的破坏,与人脑进化有关,也改变了扩散。将增殖表型与染色质相互作用整合揭示了增强子与其靶基因之间的调节关系,这些基因有助于神经发生并可能有助于人类皮质进化。
    Changes in gene regulation have been linked to the expansion of the human cerebral cortex and to neurodevelopmental disorders, potentially by altering neural progenitor proliferation. However, the effects of genetic variation within regulatory elements on neural progenitors remain obscure. We use sgRNA-Cas9 screens in human neural stem cells (hNSCs) to disrupt 10,674 genes and 26,385 conserved regions in 2,227 enhancers active in the developing human cortex and determine effects on proliferation. Genes with proliferation phenotypes are associated with neurodevelopmental disorders and show biased expression in specific fetal human brain neural progenitor populations. Although enhancer disruptions overall have weaker effects than gene disruptions, we identify enhancer disruptions that severely alter hNSC self-renewal. Disruptions in human accelerated regions, implicated in human brain evolution, also alter proliferation. Integrating proliferation phenotypes with chromatin interactions reveals regulatory relationships between enhancers and their target genes contributing to neurogenesis and potentially to human cortical evolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    额颞叶变性(FTLD),病理性蛋白质聚集与人类专门的社交情感和语言功能的下降有关。大多数疾病蛋白聚集体含有TDP-43(FTLD-TDP)或tau(FTLD-tau)。这里,我们探索了FTLD是否靶向表达含有人类加速区(HARs)基因的大脑区域,在最近的人类进化过程中经历了正选择的保守序列。为此,我们使用FTLD患者的结构神经成像和规范的人类区域转录组数据来鉴定在FTLD靶向脑区表达的基因.然后,我们整合了灵长类动物的比较基因组数据,以检验我们的假设,即FTLD靶向表达最近进化基因的大脑区域。此外,我们询问当TDP-43功能受损时,在FTLD靶向脑区表达的基因是否富集了进行隐秘剪接的基因.我们发现FTLD-TDP和FTLD-tau亚型靶向表达重叠和不同基因的大脑区域,包括许多与神经调节功能有关的。与FTLD皮质萎缩相关的规范大脑区域表达模式的基因与HARs密切相关。与FTLD-tau中的萎缩相关基因相比,FTLD-TDP中的萎缩相关基因与TDP-43隐性剪接基因的重叠更大。富集了HAR基因的隐性剪接基因,反之亦然,但这种影响是由于基因长度的混杂影响。在个体患者水平进行的分析显示,在FTLD-TDP亚型中,HAR基因和假定的疾病发作区域内的潜在剪接基因的表达有所不同。总的来说,我们的研究结果表明,FTLD靶向最近经历了进化特化的脑区,并为不同FTLD分子解剖亚型的选择性易损性的转录组学基础提供了有趣的潜在线索.
    In frontotemporal lobar degeneration (FTLD), pathological protein aggregation is associated with a decline in human-specialized social-emotional and language functions. Most disease protein aggregates contain either TDP-43 (FTLD-TDP) or tau (FTLD-tau). Here, we explored whether FTLD targets brain regions that express genes containing human accelerated regions (HARs), conserved sequences that have undergone positive selection during recent human evolution. To this end, we used structural neuroimaging from patients with FTLD and normative human regional transcriptomic data to identify genes expressed in FTLD-targeted brain regions. We then integrated primate comparative genomic data to test our hypothesis that FTLD targets brain regions expressing recently evolved genes. In addition, we asked whether genes expressed in FTLD-targeted brain regions are enriched for genes that undergo cryptic splicing when TDP-43 function is impaired. We found that FTLD-TDP and FTLD-tau subtypes target brain regions that express overlapping and distinct genes, including many linked to neuromodulatory functions. Genes whose normative brain regional expression pattern correlated with FTLD cortical atrophy were strongly associated with HARs. Atrophy-correlated genes in FTLD-TDP showed greater overlap with TDP-43 cryptic splicing genes compared with atrophy-correlated genes in FTLD-tau. Cryptic splicing genes were enriched for HAR genes, and vice versa, but this effect was due to the confounding influence of gene length. Analyses performed at the individual-patient level revealed that the expression of HAR genes and cryptically spliced genes within putative regions of disease onset differed across FTLD-TDP subtypes. Overall, our findings suggest that FTLD targets brain regions that have undergone recent evolutionary specialization and provide intriguing potential leads regarding the transcriptomic basis for selective vulnerability in distinct FTLD molecular-anatomical subtypes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    关于非编码区在自闭症谱系障碍(ASD)病因中的作用知之甚少。我们检查了三类非编码区域:人类加速区域(HARs),显示人类阳性选择的特征;实验验证的神经视景增强子(VE);以及预测充当神经增强子(CNE)的保守区域。对>16,600个样本和>4900个ASD先证者的靶向和全基因组分析显示,罕见,HARs中的遗传变体,VEs,CNE在父母共同血统的先证者中对ASD风险有很大贡献,丰富了隐性贡献,但谦虚地说,如果有的话,在单纯形家庭结构中。我们在IL1RAPL1附近的HARs和SIM1附近的VE中鉴定了多个患者变异,并显示它们改变了增强子活性。我们的结果暗示了人类进化和进化上保守的非编码区在ASD风险中,并提出了调控区变化如何调节社会行为的潜在机制。
    Little is known about the role of noncoding regions in the etiology of autism spectrum disorder (ASD). We examined three classes of noncoding regions: Human Accelerated Regions (HARs), which show signatures of positive selection in humans; experimentally validated neural Vista Enhancers (VEs); and conserved regions predicted to act as neural enhancers (CNEs). Targeted and whole genome analysis of >16,600 samples and >4900 ASD probands revealed that likely recessive, rare, inherited variants in HARs, VEs, and CNEs substantially contribute to ASD risk in probands whose parents share ancestry, which enriches for recessive contributions, but modestly, if at all, in simplex family structures. We identified multiple patient variants in HARs near IL1RAPL1 and in a VE near SIM1 and showed that they change enhancer activity. Our results implicate both human-evolved and evolutionarily conserved noncoding regions in ASD risk and suggest potential mechanisms of how changes in regulatory regions can modulate social behavior.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    必需基因的蛋白质产物,对于有机体的生存是不可或缺的,是高度保守的,并带来基本功能。有趣的是,含有易于快速进化的氨基酸同源物的蛋白质在真核生物必需体中富集。为什么具有超突变同系物的蛋白质富含保守且功能重要的必需蛋白质?我们通过证明具有同系物的人类必需蛋白质通过高互动性引起生物过程之间的串扰,并具有不同的调节功能,从而解决了这种功能与进化的悖论。重要的是,具有同源蛋白的必需蛋白与经常影响功能位点的氨基酸取代迅速发散,可能有助于快速适应。引人注目的是,同源的必需蛋白质影响人类特定的胚胎和大脑发育,这意味着人类的存在可能有助于人类特定过程的出现。因此,我们提出,影响物种特异性性状的含有同源蛋白的必需蛋白可以是跨病理的潜在干预目标,包括癌症和神经系统疾病。
    Protein products of essential genes, indispensable for organismal survival, are highly conserved and bring about fundamental functions. Interestingly, proteins that contain amino acid homorepeats that tend to evolve rapidly are enriched in eukaryotic essentialomes. Why are proteins with hypermutable homorepeats enriched in conserved and functionally vital essential proteins? We solve this functional versus evolutionary paradox by demonstrating that human essential proteins with homorepeats bring about crosstalk across biological processes through high interactability and have distinct regulatory functions affecting expansive global regulation. Importantly, essential proteins with homorepeats rapidly diverge with the amino acid substitutions frequently affecting functional sites, likely facilitating rapid adaptability. Strikingly, essential proteins with homorepeats influence human-specific embryonic and brain development, implying that the presence of homorepeats could contribute to the emergence of human-specific processes. Thus, we propose that homorepeat-containing essential proteins affecting species-specific traits can be potential intervention targets across pathologies, including cancers and neurological disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:人类加速区(HARs)是短的保守基因组序列,在与黑猩猩的分化后,已经获得了比人类谱系中预期的显着更多的核苷酸取代。HARs的快速进化可能反映了它们在人类特定性状起源中的作用。最近的一项研究报道了大脑专有人类加速增强子(BE-HAEs)hs1210(前脑)中积极选择的单核苷酸变体(SNV),hs563(后脑)和hs304(中脑/前脑)。通过包括来自古人类的数据,这些SNV被证明是智人特异性的,驻留在SOX2(hs1210)的转录因子结合位点(TFBS)内,RUNX1/3(hs563),和FOS/JUND(hs304)。尽管这些发现表明,TFBS中预测的修饰可能在当今的大脑结构中起着一定的作用,需要工作来验证这些变化转化为功能变化的程度。
    结果:要开始填补这一空白,我们调查了SOX2SNV,在人类中同时具有前脑表达和强烈的正选择信号。我们证明了SOX2的HMG盒在体外与智人特异性衍生的A等位基因和携带BE-HAEhs1210中DNA位点的祖先T等位基因结合。分子对接和模拟分析表明,与携带祖先T等位基因的位点相比,HMG盒与含衍生A等位基因的DNA位点的结合非常有利。
    结论:这些结果表明,在智人的进化史中,BE-HAEhs1210和其他HAR增强子中TF亲和力的过继性变化可能。已经带来了基因表达模式的变化,并对前脑的形成和进化产生了功能影响。
    方法:本研究采用电泳迁移率变化测定(EMSA)和分子对接和分子动力学模拟方法。
    BACKGROUND: Human accelerated regions (HARs) are short conserved genomic sequences that have acquired significantly more nucleotide substitutions than expected in the human lineage after divergence from chimpanzees. The fast evolution of HARs may reflect their roles in the origin of human-specific traits. A recent study has reported positively-selected single nucleotide variants (SNVs) within brain-exclusive human accelerated enhancers (BE-HAEs) hs1210 (forebrain), hs563 (hindbrain) and hs304 (midbrain/forebrain). By including data from archaic hominins, these SNVs were shown to be Homo sapiens-specific, residing within transcriptional factors binding sites (TFBSs) for SOX2 (hs1210), RUNX1/3 (hs563), and FOS/JUND (hs304). Although these findings suggest that the predicted modifications in TFBSs may have some role in present-day brain structure, work is required to verify the extent to which these changes translate into functional variation.
    RESULTS: To start to fill this gap, we investigate the SOX2 SNV, with both forebrain expression and strong signal of positive selection in humans. We demonstrate that the HMG box of SOX2 binds in vitro with Homo sapiens-specific derived A-allele and ancestral T-allele carrying DNA sites in BE-HAE hs1210. Molecular docking and simulation analysis indicated highly favourable binding of HMG box with derived A-allele containing DNA site when compared to site carrying ancestral T-allele.
    CONCLUSIONS: These results suggest that adoptive changes in TF affinity within BE-HAE hs1210 and other HAR enhancers in the evolutionary history of Homo sapiens might. have brought about changes in gene expression patterns and have functional consequences on forebrain formation and evolution.
    METHODS: The present study employ electrophoretic mobility shift assays (EMSA) and molecular docking and molecular dynamics simulations approaches.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    大量研究已经建立了肠道微生物群与人类疾病之间的因果关系。此外,微生物群的组成基本上受人类基因组的影响。现代医学研究证实,各种疾病的发病机制与人类基因组中的进化事件密切相关。人类基因组的特定区域被称为人类加速区域(HARs),自从人类与黑猩猩的共同祖先分化以来,已经在数百万年内迅速进化。已经发现HARs与一些人类特异性疾病有关。此外,在人类进化过程中,HAR调节的肠道微生物群发生了快速变化。我们认为肠道微生物群可能是将疾病与人类基因组进化联系起来的重要媒介。
    A large number of studies have established a causal relationship between the gut microbiota and human disease. In addition, the composition of the microbiota is substantially influenced by the human genome. Modern medical research has confirmed that the pathogenesis of various diseases is closely related to evolutionary events in the human genome. Specific regions of the human genome known as human accelerated regions (HARs) have evolved rapidly over several million years since humans diverged from a common ancestor with chimpanzees, and HARs have been found to be involved in some human-specific diseases. Furthermore, the HAR-regulated gut microbiota has undergone rapid changes during human evolution. We propose that the gut microbiota may serve as an important mediator linking diseases to human genome evolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Systematic Review
    精神分裂症是一种由遗传和环境因素相互作用和破坏神经发育轨迹引起的精神疾病。人类加速区(HARs)是进化上保守的基因组区域,其具有积累的人类特异性序列改变。因此,关于HARs在神经发育背景下的影响的研究,以及成人大脑表型,在过去的几年里有了相当大的增长。通过系统的方法,我们的目标是全面回顾HARs在人脑发育方面的作用,配置,和认知能力,以及HARs是否调节对精神分裂症等神经发育性精神疾病的易感性。首先,这篇综述中的证据强调了HARs在神经发育调节遗传机制背景下的分子功能。第二,脑表型分析表明,HAR基因的表达在空间上与人类特定皮质扩张区域相关,以及与区域互动的协同信息处理。最后,基于候选HAR基因和全球“HARome”变异性的研究描述了这些区域参与精神分裂症的遗传背景,还有其他神经发育精神疾病。总的来说,本综述中考虑的数据强调了HARs在人类特定神经发育过程中的关键作用,并鼓励对这一进化标记的未来研究,以更好地理解精神分裂症和其他神经发育相关精神疾病的遗传基础.因此,HARs作为有趣的基因组区域出现,需要进一步研究,以弥合精神分裂症和其他相关疾病和表型的神经发育和进化假设。
    Schizophrenia is a psychiatric disorder that results from genetic and environmental factors interacting and disrupting neurodevelopmental trajectories. Human Accelerated Regions (HARs) are evolutionarily conserved genomic regions that have accumulated human-specific sequence changes. Thus, studies on the impact of HARs in the context of neurodevelopment, as well as with respect to adult brain phenotypes, have increased considerably in the last few years. Through a systematic approach, we aim to offer a comprehensive review of HARs\' role in terms of human brain development, configuration, and cognitive abilities, as well as whether HARs modulate the susceptibility to neurodevelopmental psychiatric disorders such as schizophrenia. First, the evidence in this review highlights HARs\' molecular functions in the context of the neurodevelopmental regulatory genetic machinery. Second, brain phenotypic analyses indicate that HAR genes\' expression spatially correlates with the regions that suffered human-specific cortical expansion, as well as with the regional interactions for synergistic information processing. Lastly, studies based on candidate HAR genes and the global \"HARome\" variability describe the involvement of these regions in the genetic background of schizophrenia, but also in other neurodevelopmental psychiatric disorders. Overall, the data considered in this review emphasise the crucial role of HARs in human-specific neurodevelopment processes and encourage future research on this evolutionary marker for a better understanding of the genetic basis of schizophrenia and other neurodevelopmental-related psychiatric disorders. Accordingly, HARs emerge as interesting genomic regions that require further study in order to bridge the neurodevelopmental and evolutionary hypotheses in schizophrenia and other related disorders and phenotypes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    想象力,创造力的驱动力,原发性精神病是人类特有的,因为我们没有观察到其他物种的行为,这些行为令人信服地表明它们具有相同的特征。这两种特征都与前额叶皮质的功能有关,这是人类大脑中进化最新颖的区域。近年来,已经发现了许多进化上新颖的遗传和表观遗传变化,这些变化决定了人脑的特定结构和功能。其中包括人类单核苷酸置换率增加的基因组基因座,称为人类加速区域。这些主要的调节区域参与大脑发育,有时含有遗传变异,赋予精神分裂症的风险。另一方面,神经影像学数据表明,思维游移和相关现象(作为想象力的代表)在许多方面类似于快速眼动的梦,一种功能也存在于非人类物种中。此外,这两种功能在几个方面与精神病相似:例如,相同的大脑区域在梦中和视觉幻觉中都被激活。在当前的视角中,我们假设想象力是梦的进化适应,而原发性精神病是由高阶大脑区域对想象力的控制不足引起的。鉴于此,人类加速区域可能是人类想象力进化和精神障碍发病机制的关键驱动因素之一。
    Imagination, the driving force of creativity, and primary psychosis are human-specific, since we do not observe behaviors in other species that would convincingly suggest they possess the same traits. Both these traits have been linked to the function of the prefrontal cortex, which is the most evolutionarily novel region of the human brain. A number of evolutionarily novel genetic and epigenetic changes that determine the human brain-specific structure and function have been discovered in recent years. Among them are genomic loci subjected to increased rates of single nucleotide substitutions in humans, called human accelerated regions. These mostly regulatory regions are involved in brain development and sometimes contain genetic variants that confer a risk for schizophrenia. On the other hand, neuroimaging data suggest that mind wandering and related phenomena (as a proxy of imagination) are in many ways similar to rapid eye movement dreaming, a function also present in non-human species. Furthermore, both functions are similar to psychosis in several ways: for example, the same brain areas are activated both in dreams and visual hallucinations. In the present Perspective we hypothesize that imagination is an evolutionary adaptation of dreaming, while primary psychosis results from deficient control by higher-order brain areas over imagination. In the light of this, human accelerated regions might be one of the key drivers in evolution of human imagination and the pathogenesis of psychotic disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号