hit triage

  • 文章类型: Journal Article
    细菌耐药性对医疗保健系统的威胁越来越大,强调需要发现新的抗菌剂。一种既定的技术,基于片段的药物发现,用于靶向参与肽聚糖生物合成的细菌酶Ddl。我们组装了在生化抑制测定中筛选的一般和集中片段文库。筛选揭示了一种新的DdlB片段命中抑制剂,Ki值为20.7±4.5μM。通过正交生物物理方法确认与酶的结合,表面等离子体共振,使命中片段开发的一个有希望的起点。
    Bacterial resistance is an increasing threat to healthcare systems, highlighting the need for discovering new antibacterial agents. An established technique, fragment-based drug discovery, was used to target a bacterial enzyme Ddl involved in the biosynthesis of peptidoglycan. We assembled general and focused fragment libraries that were screened in a biochemical inhibition assay. Screening revealed a new fragment-hit inhibitor of DdlB with a Ki value of 20.7 ± 4.5 µM. Binding to the enzyme was confirmed by an orthogonal biophysical method, surface plasmon resonance, making the hit a promising starting point for fragment development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    需要有效和高度选择性的小分子抑制剂来解开组蛋白甲基转移酶的生物学复杂性并揭示其治疗潜力。开发这些抑制剂的先决条件是鉴定经过验证的化学物质以启动药物化学活动。在大多数情况下,通过筛选大的,公正的化合物库。这些库的大小和性质,再加上利用组蛋白甲基转移酶的双底物的复杂性,需要仔细考虑主屏幕和随后的命中分类。在这一章中,以EZH2为例,我们描述了一项筛查和命中分诊活动,该活动确定了经过验证的化学物质,从而可以启动药物化学研究.此外,我们讨论了一种基于细胞的检测方法,以支持铅的识别和优化。这里描述的方法需要生化的混合物,生物物理和基于细胞的测定应适用于确定其他组蛋白甲基转移酶的验证起点.
    Potent and highly selective small-molecule inhibitors are needed to unravel the biological complexities of histone methyltransferases and to reveal their therapeutic potential. A prerequisite to developing these inhibitors is the identification of validated chemical matter for initiating a medicinal chemistry campaign. For the most part, finding these initial starting points occurs through screening of large, unbiased compound libraries. The size and nature of these libraries, coupled with the complexities of the bisubstrate utilizing histone methyltransferases, necessitates that the primary screen and subsequent hit triage be carefully considered.In this chapter, using EZH2 as a representative example, we describe a screening and hit triage campaign that identified validated chemical matter allowing initiation of medicinal chemistry studies. Moreover, we discuss a cell-based assay to support lead identification and optimization. The approach described here entailing a mixture of biochemical, biophysical and cell-based assays should be applicable to identifying validated starting points for other histone methyltransferases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Phenotypic drug discovery (PDD) uses biological systems directly for new drug screening. While PDD has proved effective in the discovery of drugs with novel mechanisms, for broader adoption, key challenges need resolution: progression of poorly qualified leads and overloaded pipelines due to lack of effective tools to process and prioritize hits; and advancement of leads with undesirable mechanisms that fail at more expensive stages of discovery. Here I discuss how human-based phenotypic platforms are being applied throughout the discovery process for hit triage and prioritization, for elimination of hits with unsuitable mechanisms, and for supporting clinical strategies through pathway-based decision frameworks. Harnessing the data generated in these platforms can also fuel a deeper understanding of drug efficacy and toxicity mechanisms. As these approaches increase in use, they will gain in power for driving better decisions, generating better leads faster and in turn promoting greater adoption of PDD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The promise of phenotypic screening resides in its track record of novel biology and first-in-class therapies. However, challenges stemming from major differences between target-based and phenotypic screening do exist. These challenges prompted us to rethink the critical stage of hit triage and validation on the road to clinical candidates and novel drug targets. Whereas this process is usually straightforward for target screening hits, phenotypic screening hits act through a variety of mostly unknown mechanisms within a large and poorly understood biological space. Our analysis suggests successful hit triage and validation is enabled by three types of biological knowledge-known mechanisms, disease biology, and safety-while structure-based hit triage may be counterproductive.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Here, we describe our action plan for hit identification (APHID) that guides the process of hit triage, with elimination of less tractable hits and retention of more tractable hits. We exemplify the process with reference to our high-throughput screening (HTS) campaign against the enzyme, KAT6A, that resulted in successful identification of a tractable hit. We hope that APHID could serve as a useful, concise and digestible guide for those involved in HTS and hit triage, especially those that are relatively new to this exciting and continually evolving technology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Luciferase reporter gene assays have long been used for drug discovery due to their high sensitivity and robust signal. A dual reporter gene system contains a gene of interest and a control gene to monitor non-specific effects on gene expression. In our dual luciferase reporter gene system, a synthetic promoter of γ-globin gene was constructed immediately upstream of the firefly luciferase gene, followed downstream by a synthetic β-globin gene promoter in front of the Renilla luciferase gene. A stable cell line with the dual reporter gene was cloned and used for all assay development and HTS work. Due to the low activity of the control Renilla luciferase, only the firefly luciferase activity was further optimized for HTS. Several critical factors, such as cell density, serum concentration, and miniaturization, were optimized using tool compounds to achieve maximum robustness and sensitivity. Using the optimized reporter assay, the HTS campaign was successfully completed and approximately 1000 hits were identified. In this chapter, we also describe strategies to triage hits that non-specifically interfere with firefly luciferase.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Bromodomains are key transcriptional regulators that are thought to be druggable epigenetic targets for cancer, inflammation, diabetes and cardiovascular therapeutics. Of particular importance is the first of two bromodomains in bromodomain containing 4 protein (BRD4(1)). Protein-ligand docking in BRD4(1) was used to purchase a small, focused screening set of compounds possessing a large variety of core structures. Within this set, a small number of weak hits each contained a dihydroquinoxalinone ring system. We purchased other analogs with this ring system and further validated the new hit series and obtained improvement in binding inhibition. Limited exploration by new analog synthesis showed that the binding inhibition in a FRET assay could be improved to the low μM level making this new core a potential hit-to-lead series. Additionally, the predicted geometries of the initial hit and an improved analog were confirmed by X-ray co-crystallography with BRD4(1).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号