histone deacetylation

组蛋白脱乙酰化
  • 文章类型: Journal Article
    尽管脊髓损伤(SCI)会导致人类不可逆的感觉和运动障碍,成年斑马鱼通过损伤诱导的中枢神经系统(CNS)驻留祖细胞的增殖来保留强大的再生能力,从而在病变部位开发新的功能神经元。斑马鱼SCI的标志在于表观遗传景观的一系列变化,特别是DNA甲基化和组蛋白修饰。因此,解码SCI后表观遗传修饰对于促进SCI恢复过程的治疗性补救措施的开发至关重要。这里,我们研究了Sirtuin1(Sirt1),一种非经典组蛋白脱乙酰酶,在斑马鱼SCI后的神经祖细胞(NPC)增殖和轴突再生中起着关键作用。我们研究了Sirt1在再生脊髓损伤后的NPC增殖和轴突再生中的作用,发现Sirt1参与了NPC增殖的诱导以及脊髓再生过程中的神经胶质桥接。我们还证明Sirt1在调节HIPPO途径中起关键作用,通过脱乙酰化介导的Dnmt1失活和随后的yap1启动子的低甲基化,导致ctgfa表达的诱导,带动NPC增殖和轴突再生完成再生过程。总之,我们的研究揭示了两个重要的表观遗传效应子之间的新的交叉对话,Sirt1和Dnmt1,在脊髓再生的背景下,在Sirt1和Yap1之间建立了以前未公开的关系,这可以更深入地了解控制损伤诱导的NPC增殖和轴突再生的潜在机制。因此,我们已经确定Sirt1是一部小说,通过调节斑马鱼的HIPPO途径,脊髓再生的主要表观遗传调节因子。
    Though spinal cord injury (SCI) causes irreversible sensory and motor impairments in human, adult zebrafish retain the potent regenerative capacity by injury-induced proliferation of central nervous system (CNS)-resident progenitor cells to develop new functional neurons at the lesion site. The hallmark of SCI in zebrafish lies in a series of changes in the epigenetic landscape, specifically DNA methylation and histone modifications. Decoding the post-SCI epigenetic modifications is therefore critical for the development of therapeutic remedies that boost SCI recovery process. Here, we have studied on Sirtuin1 (Sirt1), a non-classical histone deacetylase that potentially plays a critical role in neural progenitor cells (NPC) proliferation and axonal regrowth following SCI in zebrafish. We investigated the role of Sirt1 in NPC proliferation and axonal regrowth in response to injury in the regenerating spinal cord and found that Sirt1 is involved in the induction of NPC proliferation along with glial bridging during spinal cord regeneration. We also demonstrate that Sirt1 plays a pivotal role in regulating the HIPPO pathway through deacetylation-mediated inactivation of Dnmt1 and subsequent hypomethylation of yap1 promoter, leading to the induction of ctgfa expression, which drives the NPC proliferation and axonal regrowth to complete the regenerative process. In conclusion, our study reveals a novel cross-talk between two important epigenetic effectors, Sirt1 and Dnmt1, in the context of spinal cord regeneration, establishing a previously undisclosed relation between Sirt1 and Yap1 which provides a deeper understanding of the underlying mechanisms governing injury-induced NPC proliferation and axonal regrowth. Therefore, we have identified Sirt1 as a novel, major epigenetic regulator of spinal cord regeneration by modulating the HIPPO pathway in zebrafish.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多诺瓦尼利什曼原虫,原生动物寄生虫,引起内脏利什曼病。寄生虫改变了宿主基因组的整体基因表达,促进其在宿主内的生存。因此,宿主表观遗传调节剂在宿主-病原体相互作用和宿主响应感染的表观遗传修饰中起重要作用。以前,我们报道了宿主表观遗传调节剂,组蛋白去乙酰化酶1(HDAC1)在利什曼原虫感染上表达上调。这种上调导致宿主防御素基因对感染的反应被抑制。在本文中,我们研究了宿主DOT1L之间的相互作用,组蛋白甲基转移酶,和HDAC1对杜氏利什曼原虫感染的反应。我们表明,DOT1L的表达在转录本和蛋白质水平上都上调,感染后导致H3K79me增加,H3K79me2和H3K79me3水平。ChIP实验表明DOT1L调控HDAC1的表达。使用siRNA下调DOT1L导致HDAC1表达降低和防御素基因转录增加,较低的寄生虫负荷。反过来,HDAC1调节DOT1L在多尼利什曼原虫感染上的表达,因为使用siRNA下调HDAC1导致DOT1L的表达降低。因此,在多诺瓦尼利什曼原虫感染期间,DOT1L和HDAC1之间的相互作用调节这两种组蛋白修饰物的表达,导致防御素基因表达的下调。
    Leishmania donovani, a protozoan parasite, causes visceral leishmaniasis. The parasite modifies the global gene expressions of the host genome, facilitating its survival within the host. Thus, the host epigenetic modulators play important roles in host-pathogen interaction and host epigenetic modification in response to infection. Previously, we had reported that the host epigenetic modulator, histone deacetylase 1 (HDAC1) expression was upregulated on Leishmania donovani infection. This upregulation led to the repression of host defensin genes in response to the infection. In this paper, we have investigated the interplay between the host DOT1L, a histone methyltransferase, and HDAC1 in response to Leishmania donovani infection. We show that the expression of DOT1L is upregulated both at transcript and protein level following infection leading to increase in H3K79me, H3K79me2, and H3K79me3 levels. ChIP experiments showed that DOT1L regulated the expression of HDAC1. Downregulation of DOT1L using siRNA resulted in decreased expression of HDAC1 and increased transcription of defensin genes and thereby, lower parasite load. In turn, HDAC1 regulates the expression of DOT1L on Leishmania donovani infection as downregulation of HDAC1 using siRNA led to reduced expression of DOT1L. Thus, during Leishmania donovani infection, an interplay between DOT1L and HDAC1 regulates the expression of these two histone modifiers leading to downregulation of defensin gene expression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    异染色质强制转录基因沉默,并且可以是表观遗传的,但潜在的机制仍不清楚。这里,我们显示组蛋白去乙酰化,异染色质结构域的保守特征,阻断参与染色质分解的SWI/SNF亚家族重塑,从而稳定保留基因沉默的修饰的核小体。组蛋白高乙酰化,由于组蛋白脱乙酰酶(HDAC)活性的丧失或组蛋白乙酰转移酶直接靶向异染色质,允许改造者进入,导致沉默缺陷。可以通过阻碍SWI/SNF活性来绕过在异染色质沉默中对HDAC的要求。突出改造者的关键作用,仅将SWI/SNF靶向异染色质,即使在具有功能性HDAC的细胞中,增加核小体周转,导致有缺陷的基因沉默和受损的表观遗传。这项研究阐明了组蛋白低乙酰化的基本机制,由异色区的高HDAC水平维持,确保稳定的基因沉默和表观遗传,提供与人类疾病相关的基因组调控机制的见解。
    Heterochromatin enforces transcriptional gene silencing and can be epigenetically inherited, but the underlying mechanisms remain unclear. Here, we show that histone deacetylation, a conserved feature of heterochromatin domains, blocks SWI/SNF subfamily remodelers involved in chromatin unraveling, thereby stabilizing modified nucleosomes that preserve gene silencing. Histone hyperacetylation, resulting from either the loss of histone deacetylase (HDAC) activity or the direct targeting of a histone acetyltransferase to heterochromatin, permits remodeler access, leading to silencing defects. The requirement for HDAC in heterochromatin silencing can be bypassed by impeding SWI/SNF activity. Highlighting the crucial role of remodelers, merely targeting SWI/SNF to heterochromatin, even in cells with functional HDAC, increases nucleosome turnover, causing defective gene silencing and compromised epigenetic inheritance. This study elucidates a fundamental mechanism whereby histone hypoacetylation, maintained by high HDAC levels in heterochromatic regions, ensures stable gene silencing and epigenetic inheritance, providing insights into genome regulatory mechanisms relevant to human diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    染色质动力学在转录调控中起重要作用。色域解旋酶DNA结合域3(CHD3)染色质重塑因子PICKLE(PKL)和HISTONEDEACETYLASE6(HDA6)是转录基因沉默所必需的,但是它们在基因抑制中的协调功能需要进一步研究。通过基因抑制筛选,我们发现,PKL的点突变可以部分恢复弱Polycomb抑制复合物1(PRC1)突变体(ring1a-2ring1b-3)的发育缺陷,其中RING1A表达被启动子处的T-DNA插入抑制。与ring1a-2ring1b-3相比,RING1A的表达增加,核小体占用减少,在pklring1a-2ring1b-3三重突变体中,RING1A基因座的组蛋白3赖氨酸9乙酰化(H3K9ac)水平增加。HDA6与PKL相互作用,并在环1a-2环1b-3背景中与PKL在遗传和分子上相似地抑制RING1A表达。此外,我们显示PKL和HDA6通过增加核小体密度和减少H3K9ac来抑制一组基因和转座因子(TE)的表达。全基因组分析表明,它们也可能协调维持DNA甲基化。我们的研究结果表明,PKL和HDA6共同发挥作用,以减少H3K9ac和增加核小体占有率,从而促进拟南芥(拟南芥)中的基因/TE调控。
    Chromatin dynamics play essential roles in transcriptional regulation. The chromodomain helicase DNA-binding domain 3 (CHD3) chromatin remodeler PICKLE (PKL) and HISTONE DEACETYLASE6 (HDA6) are required for transcriptional gene silencing, but their coordinated function in gene repression requires further study. Through a genetic suppressor screen, we found that a point mutation at PKL could partially restore the developmental defects of a weak Polycomb repressive complex 1 (PRC1) mutant (ring1a-2 ring1b-3), in which RING1A expression is suppressed by a T-DNA insertion at the promoter. Compared to ring1a-2 ring1b-3, the expression of RING1A is increased, nucleosome occupancy is reduced, and the histone 3 lysine 9 acetylation (H3K9ac) level is increased at the RING1A locus in the pkl ring1a-2 ring1b-3 triple mutant. HDA6 interacts with PKL and represses RING1A expression similarly to PKL genetically and molecularly in the ring1a-2 ring1b-3 background. Furthermore, we show that PKL and HDA6 suppress the expression of a set of genes and transposable elements (TEs) by increasing nucleosome density and reducing H3K9ac. Genome-wide analysis indicated they possibly coordinately maintain DNA methylation as well. Our findings suggest that PKL and HDA6 function together to reduce H3K9ac and increase nucleosome occupancy, thereby facilitating gene/TE regulation in Arabidopsis (Arabidopsis thaliana).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    RNA剪接在基因表达的多层调控网络中至关重要,与细胞核中的DNA和其他RNA加工机制进行功能性相互作用。然而,这些已建立的耦合都是与主要剪接体相关的;是否涉及次要剪接体仍不清楚。这里,通过使用果蝇裂解物的亲和纯化,在次要剪接体65K/RNPC3和ANKRD11之间确定了相互作用,ANKRD11是组蛋白脱乙酰酶3(HDAC3)的辅因子。使用CRISPR/Cas9系统,构建了缺失菌株,发现Dm65KΔ/Δ和Dmankrd11Δ/Δ突变体在其头部的组蛋白H3(H3K9)的Lys9和组蛋白H4(H4K5)的Lys5处的组蛋白脱乙酰化均降低,表现出各种神经相关的缺陷。65K-ANKRD11相互作用在人类细胞中也是保守的,HsANKRD11中间未表征域介导Hs65K与HDAC3的关联。靶标下的裂解和标签(CUT&Tag)分析显示HsANKRD11是桥接因子,这促进了HDAC3和Hs65K的协同共同染色质结合。HsANKRD11的敲减(KD)同时降低了它们的共同结合,导致附近H3K9的脱乙酰作用减少。最终,这项研究表明,由HsANKRD11-KD引起的许多基因的表达变化是由于HDAC3和Hs65K的共同染色质结合减少,随后H3K9的去乙酰化减少,这说明了一种新颖且保守的偶联机制,该机制将组蛋白去乙酰化与次要剪接体联系起来,以调节基因表达。
    RNA splicing is crucial in the multilayer regulatory networks for gene expression, making functional interactions with DNA- and other RNA-processing machineries in the nucleus. However, these established couplings are all major spliceosome-related; whether the minor spliceosome is involved remains unclear. Here, through affinity purification using Drosophila lysates, an interaction is identified between the minor spliceosomal 65K/RNPC3 and ANKRD11, a cofactor of histone deacetylase 3 (HDAC3). Using a CRISPR/Cas9 system, Deletion strains are constructed and found that both Dm65KΔ/Δ and Dmankrd11Δ/Δ mutants have reduced histone deacetylation at Lys9 of histone H3 (H3K9) and Lys5 of histone H4 (H4K5) in their heads, exhibiting various neural-related defects. The 65K-ANKRD11 interaction is also conserved in human cells, and the HsANKRD11 middle-uncharacterized domain mediates Hs65K association with HDAC3. Cleavage under targets and tagmentation (CUT&Tag) assays revealed that HsANKRD11 is a bridging factor, which facilitates the synergistic common chromatin-binding of HDAC3 and Hs65K. Knockdown (KD) of HsANKRD11 simultaneously decreased their common binding, resulting in reduced deacetylation of nearby H3K9. Ultimately, this study demonstrates that expression changes of many genes caused by HsANKRD11-KD are due to the decreased common chromatin-binding of HDAC3 and Hs65K and subsequently reduced deacetylation of H3K9, illustrating a novel and conserved coupling mechanism that links the histone deacetylation with minor spliceosome for the regulation of gene expression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    类胡萝卜素是光合色素和抗氧化剂,有助于不同的植物颜色。然而,通过苹果(MalusdomesticaBorkh)中含有乙烯响应元件结合因子相关的两亲性抑制(EAR)的转录因子(TFs),TOPLESS(TPL/TPR)介导的组蛋白脱乙酰化参与类胡萝卜素生物合成的调节。)知之甚少。MdMYB44是包含EAR抑制基序的转录阻遏子。在本研究中,我们使用功能分析和分子分析来阐明MdMYB44-MdTPR1介导的组蛋白脱乙酰作用影响苹果类胡萝卜素生物合成的分子机制.我们确定了两个类胡萝卜素生物合成基因,MdCCD4和MdCYP97A3被证实参与MdMYB44介导的类胡萝卜素生物合成。MdMYB44通过抑制MdCCD4表达增强β-分支类胡萝卜素生物合成,而MdMYB44通过抑制MdCYP97A3表达抑制叶黄素水平。此外,MdMYB44通过EAR基序与共阻遏物TPR1相互作用,通过组蛋白脱乙酰化抑制MdCCD4和MdCYP97A3表达,从而部分影响类胡萝卜素的生物合成。我们的发现表明,MdTPR1-MdMYB44抑制级联调节类胡萝卜素的生物合成,对植物中组蛋白脱乙酰化介导的类胡萝卜素生物合成的分子基础提供了深刻的见解。这些结果还提供了证据,表明携带EAR的TF/TPL抑制复合物在各种植物中组蛋白脱乙酰化介导的基因表达抑制中起着普遍作用。
    Carotenoids are photosynthetic pigments and antioxidants that contribute to different plant colors. However, the involvement of TOPLESS (TPL/TPR)-mediated histone deacetylation in the modulation of carotenoid biosynthesis through ethylene-responsive element-binding factor-associated amphiphilic repression (EAR)-containing transcription factors (TFs) in apple (Malus domestica Borkh.) is poorly understood. MdMYB44 is a transcriptional repressor that contains an EAR repression motif. In the present study, we used functional analyses and molecular assays to elucidate the molecular mechanisms through which MdMYB44-MdTPR1-mediated histone deacetylation influences carotenoid biosynthesis in apples. We identified two carotenoid biosynthetic genes, MdCCD4 and MdCYP97A3, that were confirmed to be involved in MdMYB44-mediated carotenoid biosynthesis. MdMYB44 enhanced β-branch carotenoid biosynthesis by repressing MdCCD4 expression, whereas MdMYB44 suppressed lutein level by repressing MdCYP97A3 expression. Moreover, MdMYB44 partially influences carotenoid biosynthesis by interacting with the co-repressor TPR1 through the EAR motif to inhibit MdCCD4 and MdCYP97A3 expression via histone deacetylation. Our findings indicate that the MdTPR1-MdMYB44 repressive cascade regulates carotenoid biosynthesis, providing profound insights into the molecular basis of histone deacetylation-mediated carotenoid biosynthesis in plants. These results also provide evidence that the EAR-harboring TF/TPL repressive complex plays a universal role in histone deacetylation-mediated inhibition of gene expression in various plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Sirtuin6(SIRT6)是一种NAD+依赖性组蛋白H3脱乙酰酶,与染色质密切相关。减弱转录活性启动子并调节DNA修复,代谢稳态和寿命。与其他沉默调节蛋白不同,它对游离组蛋白尾巴的亲和力低,但与核小体有很强的结合。很少了解SIRT6对接在核小体上如何刺激其组蛋白脱乙酰化活性。这里,我们介绍了通过低温电子显微镜确定的与核小体结合的人SIRT6的结构。SIRT6的锌指结构域通过多个精氨酸锚与核小体的酸性斑块紧密结合。Rossmann折叠结构域结合到核小体的松散DNA一半的末端,从组蛋白八聚体上分离两圈DNA,并将NAD结合袋放置在DNA出口位点附近。该域显示出相对于固定锌指的灵活性,但也相对于,未包裹的DNA末端.我们对核小体中的组蛋白尾部进行分子动力学模拟,以表明在这种相互作用模式下,SIRT6的活性位点完全可以催化H3组蛋白尾部的脱乙酰化,并且DNA的部分解缠甚至允许接近H3核心的赖氨酸到达酶。
    Sirtuin 6 (SIRT6) is an NAD+-dependent histone H3 deacetylase that is prominently found associated with chromatin, attenuates transcriptionally active promoters and regulates DNA repair, metabolic homeostasis and lifespan. Unlike other sirtuins, it has low affinity to free histone tails but demonstrates strong binding to nucleosomes. It is poorly understood how SIRT6 docking on nucleosomes stimulates its histone deacetylation activity. Here, we present the structure of human SIRT6 bound to a nucleosome determined by cryogenic electron microscopy. The zinc finger domain of SIRT6 associates tightly with the acidic patch of the nucleosome through multiple arginine anchors. The Rossmann fold domain binds to the terminus of the looser DNA half of the nucleosome, detaching two turns of the DNA from the histone octamer and placing the NAD+ binding pocket close to the DNA exit site. This domain shows flexibility with respect to the fixed zinc finger and moves with, but also relative to, the unwrapped DNA terminus. We apply molecular dynamics simulations of the histone tails in the nucleosome to show that in this mode of interaction, the active site of SIRT6 is perfectly poised to catalyze deacetylation of the H3 histone tail and that the partial unwrapping of the DNA allows even lysines close to the H3 core to reach the enzyme.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在基因组复制期间,复制叉(RF)可能由于不同的障碍或由于复制因子或核苷酸的消耗而停滞。在停滞的RF中,有限数量的组蛋白翻译后修饰涉及RF保护和重启。如果最近观察到SIN3A组蛋白脱乙酰酶复合物减少转录-复制冲突,我们探讨了SIN3A复合物在应激条件下保护RF的作用。我们观察到Sin3A蛋白在存在羟基脲的情况下在复制DNA时富集。在这种情况下,Sin3A耗尽细胞显示RF失速增加,H3乙酰化,和DNA在停滞的RF上断裂。在Sin3A耗尽下,射频恢复受损,和DNA损伤积累。重要的是,这些作用部分依赖于MUS81核酸内切酶,促进DNA断裂和MRE11依赖性DNA降解。我们建议由SIN3A复合物触发的染色质去乙酰化限制了MUS81对停滞的RF的裂解,当DNA复制受到挑战时促进基因组稳定性。
    During genome duplication, replication forks (RFs) can be stalled by different obstacles or by depletion of replication factors or nucleotides. A limited number of histone post-translational modifications at stalled RFs are involved in RF protection and restart. Provided the recent observation that the SIN3A histone deacetylase complex reduces transcription-replication conflicts, we explore the role of the SIN3A complex in protecting RFs under stressed conditions. We observe that Sin3A protein is enriched at replicating DNA in the presence of hydroxyurea. In this situation, Sin3A-depleted cells show increased RF stalling, H3 acetylation, and DNA breaks at stalled RFs. Under Sin3A depletion, RF recovery is impaired, and DNA damage accumulates. Importantly, these effects are partially dependent on the MUS81 endonuclease, which promotes DNA breaks and MRE11-dependent DNA degradation of such breaks. We propose that chromatin deacetylation triggered by the SIN3A complex limits MUS81 cleavage of stalled RFs, promoting genome stability when DNA replication is challenged.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    使遗传相同的细胞差异调节基因表达的机制是复杂的,是生物体发育和进化的核心。虽然涉及组蛋白修饰酶的DNA序列特异性募集的基因沉默途径在自然界中很普遍,与序列无关的可遗传基因沉默的例子很少。裂殖酵母裂殖酵母的研究表明,可以发生与序列无关的异染色质繁殖,但需要许多多亚基蛋白复合物及其多种活性。迄今为止,这种复杂性已排除了通过常规体外重建方法对可遗传基因沉默的最低要求的连贯衔接。这里,我们采用非常规方法,通过在出芽酵母酿酒酵母细胞中工程化序列无关的沉默染色质遗传来定义这些要求。赋予这些细胞记忆的机制非常简单,只需要两种蛋白质,一个识别组蛋白H3赖氨酸9甲基化(H3K9me)并催化组蛋白H4赖氨酸16(H4K16)的去乙酰化,另一个识别脱乙酰H4K16并催化H3K9me。一起,这些双语“读写”蛋白质形成了一个相互依赖的正反馈回路,足以在多代中传递与DNA序列无关的沉默信息。
    Mechanisms enabling genetically identical cells to differentially regulate gene expression are complex and central to organismal development and evolution. While gene silencing pathways involving DNA sequence-specific recruitment of histone-modifying enzymes are prevalent in nature, examples of sequence-independent heritable gene silencing are scarce. Studies of the fission yeast Schizosaccharomyces pombe indicate that sequence-independent propagation of heterochromatin can occur but requires numerous multisubunit protein complexes and their diverse activities. Such complexity has so far precluded a coherent articulation of the minimal requirements for heritable gene silencing by conventional in vitro reconstitution approaches. Here, we take an unconventional approach to defining these requirements by engineering sequence-independent silent chromatin inheritance in budding yeast Saccharomyces cerevisiae cells. The mechanism conferring memory upon these cells is remarkably simple and requires only two proteins, one that recognizes histone H3 lysine 9 methylation (H3K9me) and catalyzes the deacetylation of histone H4 lysine 16 (H4K16), and another that recognizes deacetylated H4K16 and catalyzes H3K9me. Together, these bilingual \"read-write\" proteins form an interdependent positive feedback loop that is sufficient for the transmission of DNA sequence-independent silent information over multiple generations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号