heterobilayers

异双层
  • 文章类型: Journal Article
    在多维可调谐莫尔超晶格系统中对物理性质的操纵是纳米光子学中的一个关键焦点,特别是对于二维材料中的层间激子(IXs)。然而,缺陷对IXs的影响尚不清楚。这里,我们深入研究了具有不同缺陷密度的WS2/WSe2异质双层的光学性质。低温光致发光(PL)表征表明,与高能IXs相比,低能IXs更容易受到缺陷的影响。低能IXs也显示出更快的PL淬火速率随温度变化,更快的峰宽加宽率与激光功率,更短的寿命,与缺陷较少的区域中的低能IX相比,圆极化较低。这些效应归因于电子散射增加的综合效应,激子-声子相互作用,以及缺陷引入的非辐射通道。我们的发现有助于优化莫尔超晶格结构。
    Manipulation of physical properties in multidimensional tunable moiré superlattice systems is a key focus in nanophotonics, especially for interlayer excitons (IXs) in two-dimensional materials. However, the impact of defects on IXs remains unclear. Here, we thoroughly study the optical properties of WS2/WSe2 heterobilayers with varying defect densities. Low-temperature photoluminescence (PL) characterizations reveal that the low-energy IXs are more susceptible to defects compared to the high-energy IXs. The low-energy IXs also show much faster PL quenching rate with temperature, faster peak width broadening rate with laser power, shorter lifetime, and lower circular polarization compared to the low-energy IXs in the region with fewer defects. These effects are attributed to the combined effects of increased electron scattering, exciton-phonon interactions, and nonradiative channels introduced by the defects. Our findings aid in optimizing moiré superlattice structures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    二维半导体的扭曲双层为使用莫尔超晶格效应设计电荷载流子的量子态提供了通用平台。在最近感兴趣的系统中,有扭曲的MoX2/WX2异质结构(X=Se或S),它们经历了优先堆叠域和高度应变的域壁网络的重建,确定跨莫尔超晶格的电子/空穴局部化。这里,我们介绍了在晶格重建的边缘扭曲的MoX2/WX2双层中形成自组织量子点和线的选择目录,该双层具有相对晶格失配δä1,扭曲角范围从完美对准到θ〜1°。在考虑域墙网络旋转的多尺度建模的基础上,我们分析了晶胞具有平行和反平行取向的双层,并描述了当θ<δ和θ>δ时电子和空穴在莫尔超晶格上的能带边缘不同位置之间的交叉。
    Twisted bilayers of two-dimensional semiconductors offer a versatile platform for engineering quantum states for charge carriers using moiré superlattice effects. Among the systems of recent interest are twistronic MoX2/WX2 heterostructures (X = Se or S), which undergo reconstruction into preferential stacking domains and highly strained domain wall networks, determining the electron/hole localization across moiré superlattices. Here, we present a catalogue of options for the formation of self-organized quantum dots and wires in lattice-reconstructed marginally twisted MoX2/WX2 bilayers with a relative lattice mismatch δ ≪ 1 for twist angles ranging from perfect alignment to θ ∼ 1°. On the basis of multiscale modeling taking into account twirling of domain wall networks, we analyze bilayers with both parallel and antiparallel orientations of their unit cells and describe crossovers between different positioning of band edges for electrons and holes across moiré superlattices when θ < δ and θ > δ.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    使用合金化的带结构工程被广泛用于在现代半导体器件中实现优化的性能。虽然已经在单层过渡金属二硫化物中研究了合金化,它在由原子薄层构建的范德华异质结构中的应用还未得到探索。这里,我们制造了由WSe2(或MoSe2)和MoxW{1}Se2合金单层制成的异质双层,并观察到所得能带结构随浓度x的变化而进行的不平凡的调整。我们通过测量由位于不同单层中的电子和空穴组成的层间激子(IX)的光致发光(PL)的能量来监视这种演化。在MoxW{1}Se2/WSe2中,我们观察到从1到0.6变化的100meV的强IX能量偏移。然而,对于0.6,此位移饱和,并且IXPL能量渐近地接近双层WSe2中的间接带隙。从理论上讲,我们将这一观察结果解释为导带K谷0.6的强烈变化,其中IXPL来自K跃迁,而对于0.6,带结构杂交变得普遍,导致主要的动量-间接KQ跃迁。这种能带结构杂交伴随着IXPL动力学和非线性激子特性的强烈修饰。我们的工作为范德华异质结构的能带结构工程奠定了基础,突出了杂交效应的重要性,并为具有精确定制的电子特性的器件开辟了一条道路。
    Bandstructure engineering using alloying is widely utilized for achieving optimized performance in modern semiconductor devices. While alloying has been studied in monolayer transition metal dichalcogenides, its application in van der Waals heterostructures built from atomically thin layers is largely unexplored. Here, heterobilayers made from monolayers of WSe2 (or MoSe2) and MoxW1 - xSe2 alloy are fabricated and nontrivial tuning of the resultant bandstructure is observed as a function of concentration x. This evolution is monitored by measuring the energy of photoluminescence (PL) of the interlayer exciton (IX) composed of an electron and hole residing in different monolayers. In MoxW1 - xSe2/WSe2, a strong IX energy shift of ≈100 meV is observed for x varied from 1 to 0.6. However, for x < 0.6 this shift saturates and the IX PL energy asymptotically approaches that of the indirect bandgap in bilayer WSe2. This observation is theoretically interpreted as the strong variation of the conduction band K valley for x > 0.6, with IX PL arising from the K - K transition, while for x < 0.6, the bandstructure hybridization becomes prevalent leading to the dominating momentum-indirect K - Q transition. This bandstructure hybridization is accompanied with strong modification of IX PL dynamics and nonlinear exciton properties. This work provides foundation for bandstructure engineering in van der Waals heterostructures highlighting the importance of hybridization effects and opening a way to devices with accurately tailored electronic properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    关于由二维过渡金属二硫属化合物组成的范德华结构,层间激子物理在光子学等令人兴奋的新现象和应用中起着决定性的作用,光电和山谷电子。在这项工作中,除了被广泛接受的,传统的间接两步法,我们证明了大的层间极化可以在MoSSe/WSSe中直接形成层间激子。在MoSSe/WSSe,具有相当大的振荡器强度的层间激子位于1.49eV,远低于特征层内激子,激子结合能显著降低为0.28eV,激子寿命提高为2.25ns。
    In respect to the van der Waals structures composed of two-dimensional transition metal dichalcogenides, the interlayer excitonic physics plays a determinative role in the exciting new phenomena and applications in such as photonics, optoelectronics and valleytronics. In this work, beyond the well-accepted, conventional indirect two-step process, we proved that the large interlayer polarization can cause the direct formation of interlayer excitons in MoSSe/WSSe. In MoSSe/WSSe, the interlayer exciton with a sizable oscillator strength is located at 1.49 eV, well below the characteristic intralayer excitons, with a significantly reduced exciton binding energy of 0.28 eV and an improved exciton lifetime of 2.25 ns.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    众所周知,扭曲的范德华异质结构会引起令人惊讶的多样化和有趣的现象,如相关的电子相位和非常规的光学性质。这可以通过相邻原子平面的受控旋转来实现,这提供了一种不常见的方式来操纵非弹性光物质相互作用。这里,我们发现在WS2/WSe2扭曲的异双层中,高频声子模式的5-6波数的蓝移,使用拉曼光谱精心捕获。声子谱在层间扭曲角的细微变化上迅速位移,这是由于杂应变和莫尔图案的原子重建所致。进一步发现,与单层对应物相比,扭曲异质结构中声子模的一阶线性系数大大增加,并且随扭曲角的变化而变化。在特定的扭曲角下,拉曼振动强度观察到高达50倍的异常和过度增强;这在很大程度上受到从简单的临界扭曲角模型得出的共振过程的影响。此外,我们描述了如何通过改变热条件和堆叠角度来调制共振。因此,我们的工作进一步强调了原始二维异质结构中扭曲驱动的声子动力学,增加了对莫尔物理学的重要见解,并促进了对莫尔超晶格结构和光学性质的全面理解。
    Twisted van der Waals heterostructures are known to induce surprisingly diverse and intriguing phenomena, such as correlated electronic phase and unconventional optical properties. This can be realized by controlled rotation of adjacent atomic planes, which provides an uncommon way to manipulate inelastic light-matter interactions. Here, we discover an extraordinary blue shift of 5-6 wavenumbers for high-frequency phonon modes in WS2/WSe2 twisted heterobilayers, captured meticulously using Raman spectroscopy. Phonon spectra displace rapidly over a subtle change in interlayer twist angle owing to heterostrain and atomic reconstruction from the Moiré pattern. First-order linear coefficients of the phonon modes in twisted heterostructures are further found to increase largely compared to their monolayer counterpart and vary immensely with the twist angle. Exceptional and extravagant enhancement of up to 50-fold is observed in the Raman vibrational intensity at a specific twist angle; this is largely influenced by the resonance process derived from a simple critical twist angle model. In addition, we depict how the resonance can be modulated by changing the thermal conditions and also the stacking angle. Therefore, our work further highlights the twist-driven phonon dynamics in pristine two-dimensional heterostructures, adding vital insight into Moiré physics and promoting comprehensive understanding of structural and optical properties in Moiré superlattices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    堆叠原子薄膜可以人工构建具有奇特功能的范德华异质结构,例如超导性,量子霍尔效应,和工程光物质相互作用。特别是,由单层过渡金属二硫属化合物组成的异双层由于其可控的层间耦合和在莫尔超晶格中捕获的谷激子而引起了人们的极大兴趣。然而,由于动量直接(K-K)和-间接激子都位于单层成分中亮激子的低能量侧,因此在异对双层中扭曲角调制的光学跃迁的识别有时是有争议的。这里,我们根据对实验光致发光光谱与理论计算的系统分析和比较,将WS2/WSe2异质双层中的〜1.35eV处的光学跃迁归因于间接的Γ-K跃迁。通过最先进的GW-Bethe-Salpeter方程方法获得的激子波函数表明,激子的电子和空穴均由WS2层贡献。偏振分辨k空间成像进一步证实,该光学跃迁的跃迁偶极矩主要在平面内,并且与扭转角无关。计算的吸收光谱预测,来自K-K跃迁的所谓层间激子峰位于1.06eV,但是振幅要弱得多。我们的工作为范德华异质结构中与扭曲角相关的激子的稳态和动态特性提供了新的见解。
    Stacking atomically thin films enables artificial construction of van der Waals heterostructures with exotic functionalities such as superconductivity, the quantum Hall effect, and engineered light-matter interactions. In particular, heterobilayers composed of monolayer transition metal dichalcogenides have attracted significant interest due to their controllable interlayer coupling and trapped valley excitons in moiré superlattices. However, the identification of twist-angle-modulated optical transitions in heterobilayers is sometimes controversial since both momentum-direct (K-K) and -indirect excitons reside on the low energy side of the bright exciton in the monolayer constituents. Here, we attribute the optical transition at ∼1.35 eV in the WS2/WSe2 heterobilayer to an indirect Γ-K transition based on a systematic analysis and comparison of experimental photoluminescence spectra with theoretical calculations. The exciton wavefunction obtained by the state-of-the-art GW-Bethe-Salpeter equation approach indicates that both the electron and hole of the excitons are contributed by the WS2 layer. Polarization-resolved k-space imaging further confirms that the transition dipole moment of this optical transition is dominantly in-plane and is independent of the twist angle. The calculated absorption spectrum predicts that the so-called interlayer exciton peak coming from the K-K transition is located at 1.06 eV, but with a much weaker amplitude. Our work provides new insight into the steady-state and dynamic properties of twist-angle-dependent excitons in van der Waals heterostructures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    原子薄单层半导体过渡金属二硫属化合物(TMD),表现出直接带隙和强的光-物质相互作用,有前途的光电设备。然而,需要一种有效的频带对准工程方法来进一步扩大其作为通用光电子学的实际应用。在这项工作中,使用化学气相沉积(CVD)方法的两个垂直堆叠的单层TMD的能带排列通过两种策略有效地调节:1)配制MoS2(1-x)Se2x合金的组成,和2)改变堆叠的异质双层结构的扭转角。光致发光(PL)结果结合密度泛函理论(DFT)计算表明,通过改变合金成分,实现了TMD异双层的II型-I型-II型带对准的连续可调带对准和过渡。此外,仅在中等(10°-50°)的扭转角下,观察到由I型排列引起的28%-110%的PL增强,说明扭转角与异双层的整体能带结构耦合。用MoS0.76Se1.24/WS2制成的14°异质结器件显示出极高的光响应性(55.9AW-1),大探测率(1.07×1010琼斯),和高的外量子效率(135%)。这些发现为异质结构设计在光电器件中的应用提供了工程工具。
    Atomically thin monolayer semiconducting transition metal dichalcogenides (TMDs), exhibiting direct band gap and strong light-matter interaction, are promising for optoelectronic devices. However, an efficient band alignment engineering method is required to further broaden their practical applications as versatile optoelectronics. In this work, the band alignment of two vertically stacked monolayer TMDs using the chemical vapor deposition (CVD) method is effectively tuned by two strategies: 1) formulating the compositions of MoS2(1-x) Se2x alloys, and 2) varying the twist angles of the stacked heterobilayer structures. Photoluminescence (PL) results combined with density functional theory (DFT) calculation show that by changing the alloy composition, a continuously tunable band alignment and a transition of type II-type I-type II band alignment of TMD heterobilayer is achieved. Moreover, only at moderate (10°-50°) twist angles, a PL enhancement of 28%-110% caused by the type I alignment is observed, indicating that the twist angle is coupled with the global band structure of heterobilayer. A heterojunction device made with MoS0.76 Se1.24 /WS2 of 14° displays a significantly high photoresponsivity (55.9 A W-1 ), large detectivity (1.07 × 1010 Jones), and high external quantum efficiency (135%). These findings provide engineering tools for heterostructure design for their application in optoelectronic devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    First principles calculations have been performed to investigate the structural, electronic, and optical properties of germanene/MoS2 heterostructures. The results show that a weak van der Waals coupling between germanene and MoS2 layers can lead to a considerable band-gap opening (53 meV) as well as the preserved Dirac cone with a linear band dispersion of germanene. The applied external electric filed can not only enhance the interaction strength between two layers, but also linearly control the charge transfer between germanene and MoS2 layers, and consequently lead to a tunable band gap. Furthermore, the reduction in the optical absorption intensity of the heterostructures with respect to the separated monolayers has been predicted. These findings suggest that the Ge/MoS2 hybrid can be designed as the device where both finite band gap and high carrier mobility are required.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号