genotype to phenotype

  • 文章类型: Journal Article
    比较生态生理学家努力了解非模式生物的生理问题,但是RNA干扰(RNAi)等分子工具在我们的领域中使用不足。这里,我们为无脊椎动物生态生理学家提供了一个框架,使用RNAi来回答关注生理过程的问题,而不是作为研究基因功能的工具。我们特别关注非模型无脊椎动物,其中使用其他遗传工具(例如,遗传敲除系)的可能性较小。我们认为,由于RNAi引发了基因表达的暂时操纵,进行RNAi的资源在技术上和财政上都是可以获得的,它是无脊椎动物生态生理学家的有效工具。我们涵盖了RNA干扰的术语和基本机制,作为“非分子”生理学家的可访问介绍,包括用于识别RNAi基因靶标和验证生物学相关基因敲除的建议工作流程,并提出了一个假设检验框架,用于使用RNAi来回答无脊椎动物生态生理学领域的常见问题。这篇综述鼓励无脊椎动物生态学家使用这些工具和工作流程来探索生理过程,并将基因型与感兴趣的动物的表型联系起来。
    Comparative ecophysiologists strive to understand physiological problems in non-model organisms, but molecular tools such as RNA interference (RNAi) are under-used in our field. Here, we provide a framework for invertebrate ecophysiologists to use RNAi to answer questions focused on physiological processes, rather than as a tool to investigate gene function. We specifically focus on non-model invertebrates, in which the use of other genetic tools (e.g., genetic knockout lines) is less likely. We argue that because RNAi elicits a temporary manipulation of gene expression, and resources to carry out RNAi are technically and financially accessible, it is an effective tool for invertebrate ecophysiologists. We cover the terminology and basic mechanisms of RNA interference as an accessible introduction for \"non-molecular\" physiologists, include a suggested workflow for identifying RNAi gene targets and validating biologically relevant gene knockdowns, and present a hypothesis-testing framework for using RNAi to answer common questions in the realm of invertebrate ecophysiology. This review encourages invertebrate ecophysiologists to use these tools and workflows to explore physiological processes and bridge genotypes to phenotypes in their animal(s) of interest.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    产量预测是基因组选择(GS)辅助作物育种的主要目标。由于产量是一个复杂的数量性状,从基因型数据进行预测是具有挑战性的。迁移学习可以通过利用来自不同,但相关,源域,被认为是一种通过整合多性状数据来提高产量预测的巨大潜在方法。然而,由于缺乏有效的实施框架,该方法之前尚未应用于基因型-表型预测.因此,我们开发了TrG2P,基于迁移学习的框架。TrG2P首先采用卷积神经网络(CNN),使用非产量性状表型和基因型数据来训练模型,从而获得预训练的模型。随后,来自这些预训练模型的卷积层参数被转移到产量预测任务,完全连接的层被重新训练,从而获得微调模型。最后,将微调模型的卷积层和第一个全连接层融合,最后一个完全连接的层被训练以增强预测性能。我们将TrG2P应用于来自玉米(Zeamays)的五组基因型和表型数据,水稻(水稻),和小麦(小麦),并将模型精度与其他七个流行的GS工具进行了比较:rrBLUP,随机森林,支持向量回归,LightGBM,CNN,深度,DNNGP。TrG2P将产量预测精度提高了39.9%,6.8%,在大米中占1.8%,玉米,小麦,分别,与性能最佳的比较模型生成的预测进行比较。因此,我们的工作表明,迁移学习是通过整合非产量性状数据中的信息来改善产量预测的有效策略。我们将增强的预测准确性归因于可从与产量相关的性状中获得的有价值的信息以及训练数据集的增强。TrG2P的Python实现可在https://github.com/lijinlong1991/TrG2P获得。基于Web的工具可在http://trg2p获得。ebreed.cn:81.
    Yield prediction is the primary goal of genomic selection (GS)-assisted crop breeding. Because yield is a complex quantitative trait, making predictions from genotypic data is challenging. Transfer learning can produce an effective model for a target task by leveraging knowledge from a different, but related, source domain and is considered a great potential method for improving yield prediction by integrating multi-trait data. However, it has not previously been applied to genotype-to-phenotype prediction owing to the lack of an efficient implementation framework. We therefore developed TrG2P, a transfer-learning-based framework. TrG2P first employs convolutional neural networks (CNN) to train models using non-yield-trait phenotypic and genotypic data, thus obtaining pre-trained models. Subsequently, the convolutional layer parameters from these pre-trained models are transferred to the yield prediction task, and the fully connected layers are retrained, thus obtaining fine-tuned models. Finally, the convolutional layer and the first fully connected layer of the fine-tuned models are fused, and the last fully connected layer is trained to enhance prediction performance. We applied TrG2P to five sets of genotypic and phenotypic data from maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum) and compared its model precision to that of seven other popular GS tools: ridge regression best linear unbiased prediction (rrBLUP), random forest, support vector regression, light gradient boosting machine (LightGBM), CNN, DeepGS, and deep neural network for genomic prediction (DNNGP). TrG2P improved the accuracy of yield prediction by 39.9%, 6.8%, and 1.8% in rice, maize, and wheat, respectively, compared with predictions generated by the best-performing comparison model. Our work therefore demonstrates that transfer learning is an effective strategy for improving yield prediction by integrating information from non-yield-trait data. We attribute its enhanced prediction accuracy to the valuable information available from traits associated with yield and to training dataset augmentation. The Python implementation of TrG2P is available at https://github.com/lijinlong1991/TrG2P. The web-based tool is available at http://trg2p.ebreed.cn:81.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生物学的中心目标是了解遗传变异如何产生表型变异,已被描述为基因型到表型(G到P)图。植物形态由内在发育和外在环境输入不断塑造,因此,植物表型是高度多变量的,需要全面的方法来完全量化。然而,植物表型鉴定工作中的一个常见假设是,一些预先选择的测量可以充分描述相关的表型空间。我们对根系结构的遗传基础了解不足至少部分是这种不一致的结果。根系是复杂的3D结构,通常以相对简单的单变量特征测量的2D表示进行研究。在之前的工作中,我们证明了持续的同源性,一种拓扑数据分析方法,不预先假定数据的显著特征,可以扩展表型性状空间,并从常用的2D根表型平台识别新的G到P关系。在这里,我们将工作扩展到来自作图种群的玉米幼苗的整个3D根系结构,该作图种群旨在了解玉米-氮关系的遗传基础。使用84个单变量性状的面板,为3D分支开发的持续同源方法,和集体特征空间的多元向量,我们发现每种方法都能捕获有关根系变异的不同信息,大多数非重叠QTL证明了这一点,因此,根表型性状空间不容易耗尽。这项工作提供了一种数据驱动的方法来评估3D根结构,并强调了非规范表型对于更准确地表示G到P图的重要性。
    A central goal of biology is to understand how genetic variation produces phenotypic variation, which has been described as a genotype to phenotype (G to P) map. The plant form is continuously shaped by intrinsic developmental and extrinsic environmental inputs, and therefore plant phenomes are highly multivariate and require comprehensive approaches to fully quantify. Yet a common assumption in plant phenotyping efforts is that a few pre-selected measurements can adequately describe the relevant phenome space. Our poor understanding of the genetic basis of root system architecture is at least partially a result of this incongruence. Root systems are complex 3D structures that are most often studied as 2D representations measured with relatively simple univariate traits. In prior work, we showed that persistent homology, a topological data analysis method that does not pre-suppose the salient features of the data, could expand the phenotypic trait space and identify new G to P relations from a commonly used 2D root phenotyping platform. Here we extend the work to entire 3D root system architectures of maize seedlings from a mapping population that was designed to understand the genetic basis of maize-nitrogen relations. Using a panel of 84 univariate traits, persistent homology methods developed for 3D branching, and multivariate vectors of the collective trait space, we found that each method captures distinct information about root system variation as evidenced by the majority of non-overlapping QTL, and hence that root phenotypic trait space is not easily exhausted. The work offers a data-driven method for assessing 3D root structure and highlights the importance of non-canonical phenotypes for more accurate representations of the G to P map.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    背景:准确的模型对于从高通量基因组数据中估计表型至关重要。虽然遗传和表型数据是敏感的,安全模型对于保护私人信息至关重要。因此,构建准确、安全的模型对表型的安全推断具有重要意义。方法:我们提出了一种具有加密线性模型的同态加密基因型数据的安全推理协议。首先,用Xgboost或Adaboost按特征重要性缩放基因型数据,然后训练线性模型以明文预测表型。其次,使用CKKS方案对模型参数和测试数据进行加密,以进行安全推断。第三,预测CKKS同态加密计算下的表型。最后,客户端对加密的预测进行解密,以计算1-NRMSE/AUC,用于模型评估。结果:使用具有20390个变体的3000个样品的5个表型来验证安全推断协议的性能。该方案在测试数据中实现了3种连续表型的0.9548、0.9639、0.9673(1-NRMSE)和2种类别表型的0.9943、0.99290(AUC)。此外,该方案在100次随机抽样中显示出鲁棒性。此外,该协议在198个样本的加密测试集中达到0.9725(平均准确度),它只需要4.32s的整体推理。这些有助于该协议在iDASH-2022track2挑战中排名第一。结论:我们提出了一种准确且安全的协议来预测基因型的表型,并且需要几秒钟才能获得所有表型的数百个预测。
    UNASSIGNED: Accurate models are crucial to estimate the phenotypes from high throughput genomic data. While the genetic and phenotypic data are sensitive, secure models are essential to protect the private information. Therefore, construct an accurate and secure model is significant in secure inference of phenotypes.
    UNASSIGNED: We propose a secure inference protocol on homomorphically encrypted genotype data with encrypted linear models. Firstly, scale the genotype data by feature importance with Xgboost or Adaboost then train linear models to predict the phenotypes in plaintext. Secondly, encrypt the model parameters and test data with CKKS scheme for secure inference. Thirdly, predict the phenotypes under CKKS homomorphically encryption computation. Finally, decrypt the encrypted predictions by client to compute the 1-NRMSE/AUC for model evaluation.
    UNASSIGNED: 5 phenotypes of 3000 samples with 20390 variants are used to validate the performance of the secure inference protocol. The protocol achieves 0.9548, 0.9639, 0.9673 (1-NRMSE) for 3 continuous phenotypes and 0.9943, 0.99290 (AUC) for 2 category phenotypes in test data. Moreover, the protocol shows robust in 100 times of random sampling. Furthermore, the protocol achieves 0.9725 (the average accuracy) in an encrypted test set with 198 samples, and it only takes 4.32s for the overall inference. These help the protocol rank top one in the iDASH-2022 track2 challenge.
    UNASSIGNED: We propose an accurate and secure protocol to predict the phenotype from genotype and it takes seconds to obtain hundreds of predictions for all phenotypes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基因组之间密码子频率的差异,基因,或者沿着基因的位置,调节转录和翻译效率,导致表型和功能差异。这里,我们提出了一个多尺度分析的影响,同义密码子重新编码在异源基因表达在人类细胞中,量化不同分子和细胞水平的密码子使用偏倚的表型后果,强调翻译的延伸。产生了六个同义版本的抗生素抗性基因,融合到一个荧光报告,并且在HEK293细胞中独立表达。通过定量转录组和蛋白质组评估分析了多尺度表型,作为基因表达的代理;细胞荧光,作为单细胞水平表达的代表;和在不存在或存在抗生素的情况下的实时细胞增殖,作为细胞适应性的代理。我们表明,密码子使用偏差的差异强烈影响分子和细胞表型:(i)它们导致mRNA水平和蛋白质水平的巨大差异,导致翻译效率差异超过15倍;(ii)它们引入未预测的剪接事件;(iii)它们导致可重复的表型异质性;和(iv)它们导致抗生素抗性的益处和异源表达的负担之间的权衡。在培养的人类细胞中,密码子使用偏倚通过改变mRNA的可用性和翻译的适用性来调节基因表达,导致蛋白质水平的差异,并最终引发功能表型的变化。
    Differences in codon frequency between genomes, genes, or positions along a gene, modulate transcription and translation efficiency, leading to phenotypic and functional differences. Here, we present a multiscale analysis of the effects of synonymous codon recoding during heterologous gene expression in human cells, quantifying the phenotypic consequences of codon usage bias at different molecular and cellular levels, with an emphasis on translation elongation. Six synonymous versions of an antibiotic resistance gene were generated, fused to a fluorescent reporter, and independently expressed in HEK293 cells. Multiscale phenotype was analyzed by means of quantitative transcriptome and proteome assessment, as proxies for gene expression; cellular fluorescence, as a proxy for single-cell level expression; and real-time cell proliferation in absence or presence of antibiotic, as a proxy for the cell fitness. We show that differences in codon usage bias strongly impact the molecular and cellular phenotype: (i) they result in large differences in mRNA levels and protein levels, leading to differences of over 15 times in translation efficiency; (ii) they introduce unpredicted splicing events; (iii) they lead to reproducible phenotypic heterogeneity; and (iv) they lead to a trade-off between the benefit of antibiotic resistance and the burden of heterologous expression. In human cells in culture, codon usage bias modulates gene expression by modifying mRNA availability and suitability for translation, leading to differences in protein levels and eventually eliciting functional phenotypic changes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自切割核酶是催化其自身磷酸二酯主链切割的RNA分子。这些核酶存在于生命的所有领域,也是生物技术和合成生物学应用的工具。自切割核酶也是RNA的序列与功能关系的重要模型,因为它们的小尺寸简化了遗传变体的合成,并且自切割活性是突变功能结果的可访问读数。这里,我们使用高通量实验方法来确定五个自切割核酶的每个可能的单和双突变体的相对活性。从这些数据来看,我们全面鉴定了所有5种核酶的成对突变(上位性)之间的非加性效应.我们分析了上位性的活性变化和趋势如何映射到核酶结构。所研究的各种结构为观察常见结构元素的几个例子提供了机会,并且在相同的实验条件下收集数据以进行直接比较。基于热图的数据可视化显示了表明核酶的结构特征的模式,包括配对区域,不成对的循环,非规范结构,和三级结构接触。数据还揭示了参与催化的功能关键核苷酸的特征。结果表明,数据集提供了类似于化学或酶探测实验的结构信息,但有额外的定量功能信息。大规模数据集可用于预测结构和功能的模型,以及用于设计自切割核酶的努力。
    Self-cleaving ribozymes are RNA molecules that catalyze the cleavage of their own phosphodiester backbones. These ribozymes are found in all domains of life and are also a tool for biotechnical and synthetic biology applications. Self-cleaving ribozymes are also an important model of sequence-to-function relationships for RNA because their small size simplifies synthesis of genetic variants and self-cleaving activity is an accessible readout of the functional consequence of the mutation. Here, we used a high-throughput experimental approach to determine the relative activity for every possible single and double mutant of five self-cleaving ribozymes. From this data, we comprehensively identified non-additive effects between pairs of mutations (epistasis) for all five ribozymes. We analyzed how changes in activity and trends in epistasis map to the ribozyme structures. The variety of structures studied provided opportunities to observe several examples of common structural elements, and the data was collected under identical experimental conditions to enable direct comparison. Heatmap-based visualization of the data revealed patterns indicating structural features of the ribozymes including paired regions, unpaired loops, non-canonical structures, and tertiary structural contacts. The data also revealed signatures of functionally critical nucleotides involved in catalysis. The results demonstrate that the data sets provide structural information similar to chemical or enzymatic probing experiments, but with additional quantitative functional information. The large-scale data sets can be used for models predicting structure and function and for efforts to engineer self-cleaving ribozymes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    家族性心肌病是心力衰竭和心源性猝死的前兆。在过去的几十年里,研究人员已经发现了许多基因突变主要在肌节蛋白和细胞骨架蛋白引起两种不同的疾病表型:肥大性(HCM)和扩张型(DCM)心肌病.然而,将基因型与表型联系起来的分子机制仍不清楚。这里,我们采用系统方法,整合临床前研究的实验结果(例如,鼠数据)进入一个内聚的信号网络,以仔细检查基因型到表型机制。我们利用基于逻辑的微分方程方法开发了HCM/DCM信令网络模型,并评估了模型性能,以预测来自四个上下文的实验数据(HCM,DCM,压力过载,和体积过载)。该模型的总体预测精度为83.8%,在HCM背景下(90%)比DCM(75%)具有更高的准确度。全局敏感性分析确定关键信号反应,以钙介导的肌丝力发育和钙-钙调蛋白激酶信号传导排名最高。结构修订分析表明,潜在的缺失相互作用主要控制钙调节蛋白,提高模型预测精度。联合药物治疗分析表明,钙等信号成分的下调,肌动蛋白及其相关蛋白质,生长因子受体,ERK1/2和PI3K-AKT可以抑制HCM中的肌细胞生长。在患者特异性iPSC衍生心肌细胞(MLP-W4R;MYH7-R723CiPSC-CM)的实验中,ERK1/2和PI3K-AKT的联合抑制拯救了HCM表型,正如模型所预测的那样。在DCM中,PI3K-AKT-NFAT下调与Ras/ERK1/2或肌动蛋白或Gq蛋白上调相结合可改善心肌细胞形态。模型结果表明,通过提高钙敏感性增加主动力的HCM突变可以通过平行生长因子增加ERK活性并减少偏心率。Gq介导的,和Titin途径。此外,该模型模拟了现有药物对HCM和DCM患者心脏生长的影响.该HCM/DCM信号传导模型证明了在家族性心肌病中研究基因型到表型机制的实用性。
    Familial cardiomyopathy is a precursor of heart failure and sudden cardiac death. Over the past several decades, researchers have discovered numerous gene mutations primarily in sarcomeric and cytoskeletal proteins causing two different disease phenotypes: hypertrophic (HCM) and dilated (DCM) cardiomyopathies. However, molecular mechanisms linking genotype to phenotype remain unclear. Here, we employ a systems approach by integrating experimental findings from preclinical studies (e.g., murine data) into a cohesive signaling network to scrutinize genotype to phenotype mechanisms. We developed an HCM/DCM signaling network model utilizing a logic-based differential equations approach and evaluated model performance in predicting experimental data from four contexts (HCM, DCM, pressure overload, and volume overload). The model has an overall prediction accuracy of 83.8%, with higher accuracy in the HCM context (90%) than DCM (75%). Global sensitivity analysis identifies key signaling reactions, with calcium-mediated myofilament force development and calcium-calmodulin kinase signaling ranking the highest. A structural revision analysis indicates potential missing interactions that primarily control calcium regulatory proteins, increasing model prediction accuracy. Combination pharmacotherapy analysis suggests that downregulation of signaling components such as calcium, titin and its associated proteins, growth factor receptors, ERK1/2, and PI3K-AKT could inhibit myocyte growth in HCM. In experiments with patient-specific iPSC-derived cardiomyocytes (MLP-W4R;MYH7-R723C iPSC-CMs), combined inhibition of ERK1/2 and PI3K-AKT rescued the HCM phenotype, as predicted by the model. In DCM, PI3K-AKT-NFAT downregulation combined with upregulation of Ras/ERK1/2 or titin or Gq protein could ameliorate cardiomyocyte morphology. The model results suggest that HCM mutations that increase active force through elevated calcium sensitivity could increase ERK activity and decrease eccentricity through parallel growth factors, Gq-mediated, and titin pathways. Moreover, the model simulated the influence of existing medications on cardiac growth in HCM and DCM contexts. This HCM/DCM signaling model demonstrates utility in investigating genotype to phenotype mechanisms in familial cardiomyopathy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质结构建模及其相互作用的快速进展是由基于知识的方法的进步以及对蛋白质结构和功能的物理原理的更好理解推动的。由于蛋白质相互作用数据库和蛋白质数据库的快速增长,用于蛋白质和蛋白质-蛋白质复合物建模的结构数据池不断增加。GWYRE(基因组宽PhYRE)项目通过推进和应用新的强大的建模方法对蛋白质-蛋白质相互作用和遗传变异的结构建模来利用这些发展。该方法通过全结构比对协议将使用Phyre2的基于知识的三级结构预测和使用基于模板的对接的四级结构预测集成在一起,以生成二元复合物的模型。这些预测被纳入全面的公共资源中,用于人类相互作用组的结构表征和人类遗传变异的位置。GWYRE资源有助于更好地理解蛋白质相互作用和结构/功能关系的原理。该资源可在http://www上获得。gwyre.org.
    Rapid progress in structural modeling of proteins and their interactions is powered by advances in knowledge-based methodologies along with better understanding of physical principles of protein structure and function. The pool of structural data for modeling of proteins and protein-protein complexes is constantly increasing due to the rapid growth of protein interaction databases and Protein Data Bank. The GWYRE (Genome Wide PhYRE) project capitalizes on these developments by advancing and applying new powerful modeling methodologies to structural modeling of protein-protein interactions and genetic variation. The methods integrate knowledge-based tertiary structure prediction using Phyre2 and quaternary structure prediction using template-based docking by a full-structure alignment protocol to generate models for binary complexes. The predictions are incorporated in a comprehensive public resource for structural characterization of the human interactome and the location of human genetic variants. The GWYRE resource facilitates better understanding of principles of protein interaction and structure/function relationships. The resource is available at http://www.gwyre.org.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    功能结构植物模型(FSPM)已经发展了20多年,它们的未来发展。在某种程度上,取决于在作物科学中潜在应用的价值。迄今为止,通过确定适应不利环境的新品种的有价值的性状来稳定作物生产是作物科学的主题。因此,这项研究将研究FSPM如何能够应对作物科学中的可持续作物生产的新挑战。开发的FSPM模拟器官发生,形态发生,和各种环境下的生理活动,并且可以缩小到组织,细胞,和分子水平或升级到整个植物和生态水平。在具有独立和交互式模块的建模框架中,先进的算法提供各种尺度的形态生理学细节。FSPM被证明能够:(i)有效地提供作物理想型,以优化资源分配和使用,以提高生产率和降低疾病风险,(ii)通过将分子基础与植物表型联系起来,指导分子设计育种,并通过额外的建筑尺寸来丰富作物模型,以协助育种,和(iii)在包含三维(3D)建筑性状的分子育种中与植物表型相互作用。这项研究表明,FSPM在加快特定环境的精确育种方面具有巨大的前景,因为它具有指导和整合理想型的能力,表型,分子设计,并将分子基础与目标表型联系起来。因此,FSPM在作物科学中的巨大应用前景广阔,反过来,加速他们的进化,反之亦然。
    Functional-structural plant models (FSPMs) have been evolving for over 2 decades and their future development, to some extent, depends on the value of potential applications in crop science. To date, stabilizing crop production by identifying valuable traits for novel cultivars adapted to adverse environments is topical in crop science. Thus, this study will examine how FSPMs are able to address new challenges in crop science for sustainable crop production. FSPMs developed to simulate organogenesis, morphogenesis, and physiological activities under various environments and are amenable to downscale to the tissue, cellular, and molecular level or upscale to the whole plant and ecological level. In a modeling framework with independent and interactive modules, advanced algorithms provide morphophysiological details at various scales. FSPMs are shown to be able to: (i) provide crop ideotypes efficiently for optimizing the resource distribution and use for greater productivity and less disease risk, (ii) guide molecular design breeding via linking molecular basis to plant phenotypes as well as enrich crop models with an additional architectural dimension to assist breeding, and (iii) interact with plant phenotyping for molecular breeding in embracing three-dimensional (3D) architectural traits. This study illustrates that FSPMs have great prospects in speeding up precision breeding for specific environments due to the capacity for guiding and integrating ideotypes, phenotyping, molecular design, and linking molecular basis to target phenotypes. Consequently, the promising great applications of FSPMs in crop science will, in turn, accelerate their evolution and vice versa.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号