genome engineering

基因组工程
  • 文章类型: Journal Article
    基因组整合使宿主生物体能够稳定地携带异源DNA信息,引入新的基因型和表型以扩大应用。虽然已经报道了几种基因组整合方法,仍然缺乏在特定位点基因组着陆点内存储DNA消息的可扩展工具。这里,我们介绍了一种利用正交丝氨酸整合酶的迭代基因组整合方法,使多个异源基因在大肠杆菌MG1655的染色体中稳定储存。通过利用丝氨酸整合酶TP901-1,Bxb1和PhiC31,以及工程整合载体,我们展示了高效率,DNA片段的无标记整合长达13kb。为了进一步简化程序,然后,我们开发了一种简化的整合方法,并通过构建能够存储和表达来自不同物种的多个基因的工程化大肠杆菌菌株来展示系统的多功能性。此外,我们说明了这些工程菌株在合成生物学应用中的潜在用途,包括体内和体外蛋白表达。我们的工作扩展了丝氨酸整合酶在可扩展基因整合级联中的应用范围,对合成生物学中的基因组操作和基因存储应用具有重要意义。
    Genome integration enables host organisms to stably carry heterologous DNA messages, introducing new genotypes and phenotypes for expanded applications. While several genome integration approaches have been reported, a scalable tool for DNA message storage within site-specific genome landing pads is still lacking. Here, we introduce an iterative genome integration method utilizing orthogonal serine integrases, enabling the stable storage of multiple heterologous genes in the chromosome of Escherichia coli MG1655. By leveraging serine integrases TP901-1, Bxb1, and PhiC31, along with engineered integration vectors, we demonstrate high-efficiency, marker-free integration of DNA fragments up to 13 kb in length. To further simplify the procedure, we then develop a streamlined integration method and showcase the system\'s versatility by constructing an engineered E. coli strain capable of storing and expressing multiple genes from diverse species. Additionally, we illustrate the potential utility of these engineered strains for synthetic biology applications, including in vivo and in vitro protein expression. Our work extends the application scope of serine integrases for scalable gene integration cascades, with implications for genome manipulation and gene storage applications in synthetic biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    合成生物学和基因组工程能力促进了细菌的大量应用,从医学治疗到复杂分子的生物制造。细菌外膜,特别是脂多糖(LPS),在生理学中起着不可或缺的作用,发病机制,作为革兰氏阴性菌现有检测方法的主要目标。在这里,我们使用CRISPR/Cas9重组将鼠疫耶尔森氏菌脂质A生物合成基因插入表达脂质IVa亚基的大肠杆菌菌株的基因组中。我们成功地插入了三个基因:kdsD,lpxM,并通过逆转录PCR(RT-PCR)证明它们的表达。尽管观察到这些基因的表达,通过MALDI-TOF质谱对工程菌株的脂质A结构进行分析表征表明,鼠疫耶尔森氏菌脂质A未在大肠杆菌背景中概述。随着合成生物学和基因组工程技术的进步,将继续开发用于检测和治疗鼠疫耶尔森氏菌等危险病原体的新应用和实用程序。
    Synthetic biology and genome engineering capabilities have facilitated the utilization of bacteria for a myriad of applications, ranging from medical treatments to biomanufacturing of complex molecules. The bacterial outer membrane, specifically the lipopolysaccharide (LPS), plays an integral role in the physiology, pathogenesis, and serves as a main target of existing detection assays for Gram-negative bacteria. Here we use CRISPR/Cas9 recombineering to insert Yersinia pestis lipid A biosynthesis genes into the genome of an Escherichia coli strain expressing the lipid IVa subunit. We successfully inserted three genes: kdsD, lpxM, and lpxP into the E. coli genome and demonstrated their expression via reverse transcription PCR (RT-PCR). Despite observing expression of these genes, analytical characterization of the engineered strain\'s lipid A structure via MALDI-TOF mass spectrometry indicated that the Y. pestis lipid A was not recapitulated in the E. coli background. As synthetic biology and genome engineering technologies advance, novel applications and utilities for the detection and treatments of dangerous pathogens like Yersinia pestis will continue to be developed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    合成生物学的进步允许从基因到基因组的规模设计和操纵DNA,使复杂的遗传信息工程能够应用于生物制造,生物医学和其他领域。大DNA的转移和随后的维持是大规模基因组重写中的两个核心步骤。与小DNA相比,大DNA的高分子量和脆弱性使其转移和维护成为一个具有挑战性的过程。这篇综述概述了目前可用于转移和维持细菌中大型DNA的方法,真菌,和哺乳动物细胞。它强调了他们的机制,能力和应用。转移方法分为一般方法(例如,电穿孔,共轭转移,诱导细胞融合介导的转移,和化学转化)和专门的方法(例如,自然转化,基于交配的转移,病毒介导的转染)基于其对受体细胞的适用性。维持方法分为基因组整合(例如,CRISPR/Cas辅助插入)和附加型维护(例如,人工染色体)。此外,这篇综述指出了每种方法的主要技术优势和劣势,并讨论了大型DNA转移和维护技术的发展。
    Advances in synthetic biology allow the design and manipulation of DNA from the scale of genes to genomes, enabling the engineering of complex genetic information for application in biomanufacturing, biomedicine and other areas. The transfer and subsequent maintenance of large DNA are two core steps in large scale genome rewriting. Compared to small DNA, the high molecular weight and fragility of large DNA make its transfer and maintenance a challenging process. This review outlines the methods currently available for transferring and maintaining large DNA in bacteria, fungi, and mammalian cells. It highlights their mechanisms, capabilities and applications. The transfer methods are categorized into general methods (e.g., electroporation, conjugative transfer, induced cell fusion-mediated transfer, and chemical transformation) and specialized methods (e.g., natural transformation, mating-based transfer, virus-mediated transfection) based on their applicability to recipient cells. The maintenance methods are classified into genomic integration (e.g., CRISPR/Cas-assisted insertion) and episomal maintenance (e.g., artificial chromosomes). Additionally, this review identifies the major technological advantages and disadvantages of each method and discusses the development for large DNA transfer and maintenance technologies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管它很突出,对CupriavidusnecatorH16进行无机碳吸收和固定的工程能力不足。我们测试了内源性和异源基因在C.necator无机碳代谢中的作用。β-碳酸酐酶的缺失可能对C.necator自养生长具有最有害的影响。与分批培养中的野生型(WT)C.necator相比,用来自蓝细菌和化学自养细菌的几类溶解无机碳(DIC)转运蛋白替代该天然摄取系统恢复了自养生长并支持更高的细胞密度。表达新硫杆菌DAB2(hnDAB2)和各种红宝石同源物的菌株在CO2中的生长与野生型菌株相似。我们的实验表明,在自养生长过程中,碳酸酐酶的主要作用是支持回补代谢,一系列DIC转运蛋白可以补充这一功能。这项工作证明了在C.necator中HCO3-吸收和CO2固定的灵活性,为基于二氧化碳的生物制造提供新的途径。
    Despite its prominence, the ability to engineer Cupriavidus necator H16 for inorganic carbon uptake and fixation is underexplored. We tested the roles of endogenous and heterologous genes on C. necator inorganic carbon metabolism. Deletion of β-carbonic anhydrase can had the most deleterious effect on C. necator autotrophic growth. Replacement of this native uptake system with several classes of dissolved inorganic carbon (DIC) transporters from Cyanobacteria and chemolithoautotrophic bacteria recovered autotrophic growth and supported higher cell densities compared to wild-type (WT) C. necator in batch culture. Strains expressing Halothiobacillus neopolitanus DAB2 (hnDAB2) and diverse rubisco homologs grew in CO2 similarly to the wild-type strain. Our experiments suggest that the primary role of carbonic anhydrase during autotrophic growth is to support anaplerotic metabolism, and an array of DIC transporters can complement this function. This work demonstrates flexibility in HCO3- uptake and CO2 fixation in C. necator, providing new pathways for CO2-based biomanufacturing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    对许多宿主-微生物系统中相互作用的机械理解,包括蜜蜂微生物组,受限于缺乏易于使用的基因组工程方法。为此,我们展示了一种一步法的基因组工程方法,用于在蜜蜂肠道细菌共生体的染色体中进行基因缺失和插入。包含抗生素抗性盒的线性或非复制质粒DNA的电穿孔可靠地导致染色体整合,该抗生素抗性盒的两侧与共生体基因组具有同源性。这种轻量级方法不需要表达任何外源重组机制。使用现代DNA合成和组装方法可以容易地产生使该方法有效所需的具有长同源区的高浓度大DNA。我们用这种方法敲除基因,包括参与生物膜形成的基因,并将荧光蛋白基因插入到β蛋白细菌蜂肠共生体Snodgrassellaalvi的染色体中。我们还能够设计S.alvi和另一个物种的多个菌株的基因组,Snodgrassellacommunis,在大黄蜂肠道微生物组中发现。最后,我们用同样的方法来设计另一只蜜蜂共生体的染色体,巴尔通菌,是一种变形杆菌.不出所料,使用这种方法在Alvi中的基因敲除是recA依赖性的,这表明这个简单的程序可以应用于其他缺乏方便的基因组工程方法的微生物。
    目的:蜜蜂是生态和经济上重要的作物传粉者,具有影响其健康的细菌肠道共生体。用于研究或改善蜜蜂健康的基于微生物组的策略已经利用野生型或质粒工程化细菌。我们证明了一个简单的,单步法可用于在多个蜂肠细菌的染色体中插入盒和替换基因。此方法可用于研究蜜蜂肠道群落中宿主-微生物相互作用的机制,并稳定地改造有利于传粉者健康的共生体。
    Mechanistic understanding of interactions in many host-microbe systems, including the honey bee microbiome, is limited by a lack of easy-to-use genome engineering approaches. To this end, we demonstrate a one-step genome engineering approach for making gene deletions and insertions in the chromosomes of honey bee gut bacterial symbionts. Electroporation of linear or non-replicating plasmid DNA containing an antibiotic resistance cassette flanked by regions with homology to a symbiont genome reliably results in chromosomal integration. This lightweight approach does not require expressing any exogenous recombination machinery. The high concentrations of large DNAs with long homology regions needed to make the process efficient can be readily produced using modern DNA synthesis and assembly methods. We use this approach to knock out genes, including genes involved in biofilm formation, and insert fluorescent protein genes into the chromosome of the betaproteobacterial bee gut symbiont Snodgrassella alvi. We are also able to engineer the genomes of multiple strains of S. alvi and another species, Snodgrassella communis, which is found in the bumble bee gut microbiome. Finally, we use the same method to engineer the chromosome of another bee symbiont, Bartonella apis, which is an alphaproteobacterium. As expected, gene knockout in S. alvi using this approach is recA-dependent, suggesting that this straightforward procedure can be applied to other microbes that lack convenient genome engineering methods.
    OBJECTIVE: Honey bees are ecologically and economically important crop pollinators with bacterial gut symbionts that influence their health. Microbiome-based strategies for studying or improving bee health have utilized wild-type or plasmid-engineered bacteria. We demonstrate that a straightforward, single-step method can be used to insert cassettes and replace genes in the chromosomes of multiple bee gut bacteria. This method can be used for investigating the mechanisms of host-microbe interactions in the bee gut community and stably engineering symbionts that benefit pollinator health.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    腺相关病毒(AAV)载体目前用于Leber先天性黑蒙(Luxturna)的四种批准的基因疗法,脊髓性肌萎缩症(Zolgensma),芳香族L-氨基酸脱羧酶缺乏症(Upstaza)和A型血友病(Roctavian),在临床试验中正在研究更多的疗法。在免疫毒性和遗传毒性的背景下,AAV基因治疗一直被认为是极其安全的。但是最近在X连锁肌管肌病和Duchenne肌营养不良的临床试验中悲剧性死亡,随着越来越多的关于动物模型中潜在肝脏致癌的报道,促使人们重新评估我们对AAV基因治疗安全性的信任程度,尤其是高剂量。在这篇综述中,我们涵盖了基因组和衣壳工程策略,这些策略可用于在免疫原性和遗传毒性的背景下提高下一代AAV载体的安全性,并讨论了需要填补我们当前有关AAV载体知识的空白。
    Adeno-associated virus (AAV) vectors are currently used in four approved gene therapies for Leber congenital amaurosis (Luxturna), spinal muscular atrophy (Zolgensma), aromatic L-amino acid decarboxylase deficiency (Upstaza) and Haemophilia A (Roctavian), with several more therapies being investigated in clinical trials. AAV gene therapy has long been considered extremely safe both in the context of immunotoxicity and genotoxicity, but recent tragic deaths in the clinical trials for X-linked myotubular myopathy and Duchenne\'s muscular dystrophy, together with increasing reports of potential hepatic oncogenicity in animal models have prompted re-evaluation of how much trust we can place on the safety of AAV gene therapy, especially at high doses. In this review we cover genome and capsid engineering strategies that can be used to improve safety of the next generation AAV vectors both in the context of immunogenicity and genotoxicity and discuss the gaps that need filling in our current knowledge about AAV vectors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在合成生物学中,包括酿酒酵母在内的微生物底盘被迭代地改造,其复杂性和规模越来越大。开发和优化了湿实验室基因工程工具,以促进菌株构建,但由于共享的调控元件,它们通常彼此不兼容。例如酿酒酵母中的半乳糖诱导型(GAL)启动子。这里,我们原型化了氨基氰诱导的I-SceI表达,这触发了双链DNA断裂(DSB)以去除选择性标记。我们进一步结合了氨基氰诱导的I-SceI介导的DSB和麦芽糖诱导的MazF介导的无质粒原位启动子取代的阴性选择,这简化了启动子表征的分子克隆程序。然后,我们表征了三个四环素诱导型启动子,显示出不同的强度,非渗漏β-雌二醇诱导型启动子,氰酰胺诱导型DDI2启动子,双向MAL32/MAL31启动子,和五对双向GAL1/GAL10启动子。总的来说,可以开发用于基因组工程工具的替代调节控制,以促进用于合成生物学和代谢工程应用的基因组工程。
    In synthetic biology, microbial chassis including yeast Saccharomyces cerevisiae are iteratively engineered with increasing complexity and scale. Wet-lab genetic engineering tools are developed and optimised to facilitate strain construction but are often incompatible with each other due to shared regulatory elements, such as the galactose-inducible (GAL) promoter in S. cerevisiae. Here, we prototyped the cyanamide-induced I- SceI expression, which triggered double-strand DNA breaks (DSBs) for selectable marker removal. We further combined cyanamide-induced I- SceI-mediated DSB and maltose-induced MazF-mediated negative selection for plasmid-free in situ promoter substitution, which simplified the molecular cloning procedure for promoter characterisation. We then characterised three tetracycline-inducible promoters showing differential strength, a non-leaky β-estradiol-inducible promoter, cyanamide-inducible DDI2 promoter, bidirectional MAL32/MAL31 promoters, and five pairs of bidirectional GAL1/GAL10 promoters. Overall, alternative regulatory controls for genome engineering tools can be developed to facilitate genomic engineering for synthetic biology and metabolic engineering applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基因工程已成为开发气候适应作物和环境可持续解决方案的基本要素,以应对日益增长的全球粮食安全需求。使用CRISPR/Cas[簇状调节间隔短回文重复序列(CRISPR)相关蛋白(Cas)]技术进行基因组编辑正在应用于各种生物体,包括植物。这种技术由于其高度的特异性而变得流行,有效性,生产成本低。因此,这项技术有可能彻底改变农业,并为全球粮食安全做出贡献。在过去的几年里,在开发高产方面的应用越来越努力,营养丰富,抗病,和耐胁迫的“作物”,水果,和蔬菜。Cas蛋白,如Cas9,Cas12,Cas13和Cas14等,具有独特的体系结构,并已用于创建新的遗传工具,以改善对农业重要的特征。Cas的多功能性加速了基因组分析,并促进了使用CRISPR/Cas来操纵和改变不同生物体细胞中的核酸序列。这篇综述提供了CRISPR技术的发展,探索了其机制,并将其与传统育种和转基因方法进行了对比,以提高胁迫耐受性的不同方面。我们还讨论了CRISPR/Cas系统,并探索了目前已知存在的三种Cas蛋白:Cas12、Cas13和Cas14,以及它们产生无外源DNA或非转基因作物的潜力,这些作物可以很容易地在大多数国家进行商业化调控。
    Genetic engineering has become an essential element in developing climate-resilient crops and environmentally sustainable solutions to respond to the increasing need for global food security. Genome editing using CRISPR/Cas [Clustered regulatory interspaced short palindromic repeat (CRISPR)-associated protein (Cas)] technology is being applied to a variety of organisms, including plants. This technique has become popular because of its high specificity, effectiveness, and low production cost. Therefore, this technology has the potential to revolutionize agriculture and contribute to global food security. Over the past few years, increasing efforts have been seen in its application in developing higher-yielding, nutrition-rich, disease-resistant, and stress-tolerant \"crops\", fruits, and vegetables. Cas proteins such as Cas9, Cas12, Cas13, and Cas14, among others, have distinct architectures and have been used to create new genetic tools that improve features that are important for agriculture. The versatility of Cas has accelerated genomic analysis and facilitated the use of CRISPR/Cas to manipulate and alter nucleic acid sequences in cells of different organisms. This review provides the evolution of CRISPR technology exploring its mechanisms and contrasting it with traditional breeding and transgenic approaches to improve different aspects of stress tolerance. We have also discussed the CRISPR/Cas system and explored three Cas proteins that are currently known to exist: Cas12, Cas13, and Cas14 and their potential to generate foreign-DNA-free or non-transgenic crops that could be easily regulated for commercialization in most countries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在鸡性染色体上识别准确的基因插入位点对于推进性别控制育种材料至关重要。在这项研究中,选择鸡Z染色体上的基因间区NC_006127.4和W染色体上的非重复序列EE0.6作为潜在的基因插入位点。构建靶向这些位点的基因敲除载体并转染到DF-1细胞中。T7E1酶切割和荧光素酶报告酶分析显示敲除效率为80.00%(16/20),75.00%(15/20),和75.00%(15/20)的三个sgRNA靶向EE0.6位点。对于靶向NC_006127.4位点的三个sgRNA,敲除效率为70.00%(14/20),60.00%(12/20),和45.00%(9/20)。进行凝胶电泳和高通量测序以检测潜在的脱靶效应,在这两个位点对敲除载体没有显著的脱靶效应。EdU和CCK-8增殖测定显示敲除组和对照组之间的细胞增殖活性没有显着差异。这些结果表明,EE0.6和NC_006127.4位点可以作为鸡性染色体上的基因插入位点进行基因编辑,而不会影响正常的细胞增殖。
    The identification of accurate gene insertion sites on chicken sex chromosomes is crucial for advancing sex control breeding materials. In this study, the intergenic region NC_006127.4 on the chicken Z chromosome and the non-repetitive sequence EE0.6 on the W chromosome were selected as potential gene insertion sites. Gene knockout vectors targeting these sites were constructed and transfected into DF-1 cells. T7E1 enzyme cleavage and luciferase reporter enzyme analyses revealed knockout efficiencies of 80.00% (16/20), 75.00% (15/20), and 75.00% (15/20) for the three sgRNAs targeting the EE0.6 site. For the three sgRNAs targeting the NC_006127.4 site, knockout efficiencies were 70.00% (14/20), 60.00% (12/20), and 45.00% (9/20). Gel electrophoresis and high-throughput sequencing were performed to detect potential off-target effects, showing no significant off-target effects for the knockout vectors at the two sites. EdU and CCK-8 proliferation assays revealed no significant difference in cell proliferation activity between the knockout and control groups. These results demonstrate that the EE0.6 and NC_006127.4 sites can serve as gene insertion sites on chicken sex chromosomes for gene editing without affecting normal cell proliferation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    limosum真杆菌是一种梭菌乙酸原,可有效利用多种单碳底物,并有助于人体肠道微生物群中与健康相关的化合物的代谢。这些特征引起了人们对将其开发为可持续的二氧化碳基生物燃料生产平台以对抗碳排放的兴趣,以及探索微生物群在人类健康中的重要性。然而,由于无法快速进行精确的基因组修饰,E.limosum的合成生物学和代谢工程受到阻碍。这里,我们筛选了不同的重组酶蛋白文库,以开发基于病毒重组酶RecT的高效基于寡核苷酸的重组系统。优化后,该系统能够以高达2%的效率催化ssDNA重组。添加Cas9反向选择系统消除了未合并的细胞,高达100%的活细胞编码所需的突变,能够以无疤痕和无标记的方式创建基因组点突变。我们部署了这个系统来创建一个干净的敲除细胞外聚合物(EPS)基因簇,产生无法形成生物膜的菌株。这种方法快速而简单,不需要费力的同源臂克隆,并且可以很容易地重新定位到几乎任何基因组基因座。这项工作通过实现精确的基因组修饰克服了E.limosum基因工程的主要瓶颈,并提供了路线图和相关的重组酶质粒文库,用于在其他感兴趣的梭菌中开发相似的系统。
    Eubacterium limosum is a Clostridial acetogen that efficiently utilizes a wide range of single-carbon substrates and contributes to metabolism of health-associated compounds in the human gut microbiota. These traits have led to interest in developing it as a platform for sustainable CO2-based biofuel production to combat carbon emissions, and for exploring the importance of the microbiota in human health. However, synthetic biology and metabolic engineering in E. limosum have been hindered by the inability to rapidly make precise genomic modifications. Here, we screened a diverse library of recombinase proteins to develop a highly efficient oligonucleotide-based recombineering system based on the viral recombinase RecT. Following optimization, the system is capable of catalyzing ssDNA recombination at an efficiency of up to 2%. Addition of a Cas9 counterselection system eliminated unrecombined cells, with up to 100% of viable cells encoding the desired mutation, enabling creation of genomic point mutations in a scarless and markerless manner. We deployed this system to create a clean knockout of the extracellular polymeric substance (EPS) gene cluster, generating a strain incapable of biofilm formation. This approach is rapid and simple, not requiring laborious homology arm cloning, and can readily be retargeted to almost any genomic locus. This work overcomes a major bottleneck in E. limosum genetic engineering by enabling precise genomic modifications, and provides both a roadmap and associated recombinase plasmid library for developing similar systems in other Clostridia of interest.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号