gene expression regulation, developmental

基因表达调控, 发育
  • 文章类型: Journal Article
    在胚胎发育过程中,Wnt信号传导影响耳蜗中的增殖和感觉形成。Wnt信号的这种双重性质是如何协调的是未知的。在这项研究中,我们定义了Wnt调控基因的新作用,Mybl2,已知对增殖很重要,确定小鼠耳蜗感觉上皮的大小和模式。使用定量空间分析方法并分析Mybl2功能丧失,我们表明Mybl2促进了内沟结构域的增殖,但通过在发育过程中通过Jag1调节影响其相邻边界位置来限制感觉结构域的大小。Mybl2功能丧失同时减少了内沟的增殖并增加了感觉域的大小,在胚胎晚期形成更广泛的感觉上皮,并形成异位的内毛细胞。这些数据表明,内沟中的祖细胞决定了边界形成,并通过MYBL2对感觉上皮进行了图案化。
    During embryonic development, Wnt signaling influences both proliferation and sensory formation in the cochlea. How this dual nature of Wnt signaling is coordinated is unknown. In this study, we define a novel role for a Wnt-regulated gene, Mybl2, which was already known to be important for proliferation, in determining the size and patterning of the sensory epithelium in the murine cochlea. Using a quantitative spatial analysis approach and analyzing Mybl2 loss-of-function, we show that Mybl2 promoted proliferation in the inner sulcus domain but limited the size of the sensory domain by influencing their adjoining boundary position via Jag1 regulation during development. Mybl2 loss-of-function simultaneously decreased proliferation in the inner sulcus and increased the size of the sensory domain, resulting in a wider sensory epithelium with ectopic inner hair cell formation during late embryonic stages. These data suggest that progenitor cells in the inner sulcus determine boundary formation and pattern the sensory epithelium via MYBL2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    古斯塔夫,节肢动物繁殖的正调节剂,具有保守的SPRY和C末端SOCS盒结构域,属于SPSB蛋白家族。SPSB家族,包括SPSB1到SPSB4,在高等动物中起着举足轻重的作用,包括免疫反应,凋亡,增长,和应激反应。在Nocaricidinadeticulatasinensis中,选择性剪接产生了两个NdGustavus亚型,NdGusX1和NdGusX2,在卵巢和肌肉中具有不同的表达模式,分别,以及所有卵巢生殖细胞。这些同工型在胚胎发生过程中显示出相似的表达动力学,并且在铜离子暴露后显示出显着的上调(P<0.05)。原位杂交结果表明,NdGusX1和NdGusX2在卵巢生殖细胞谱中表达,NdGusX1在卵原细胞和原代卵母细胞中显示增强的表达。此外,RNA干扰揭示了卵巢中的功能互补和肌肉中潜在的功能分化。NdGusX1和NdGusX2的敲除可能破坏内源性卵黄蛋白原合成,调节卵黄发生和减少成熟卵母细胞的体积,影响卵泡腔占用。本研究为了解SPSB家族在甲壳动物卵巢成熟中的生物学功能提供了理论框架。
    Gustavus, a positive regulator in arthropod reproduction, features a conserved SPRY and a C-terminal SOCS box domain and belongs to the SPSB protein family. The SPSB family, encompassing SPSB1 to SPSB4, plays pivotal roles in higher animals, including immune response, apoptosis, growth, and stress responses. In Neocaridina denticulata sinensis, alternative splicing yielded two NdGustavus isoforms, NdGusX1 and NdGusX2, with distinct expression patterns-high in ovaries and muscles, respectively, and across all ovarian germ cells. These isoforms showed similar expression dynamics during embryogenesis and significant upregulation post-copper ion exposure (P < 0.05). The in situ hybridization result elucidated that NdGusX1 and NdGusX2 were expressed across the germ cell spectrum in the ovary, with NdGusX1 showing enhanced expression in oogonia and primary oocytes. In addition, RNA interference revealed functional complementation in ovaries and potential functional differentiation in muscles. Knockdown of NdGusX1 and NdGusX2 potentially disrupted endogenous vitellogenin synthesis, regulating vitellogenesis and reducing mature oocyte volume, affecting follicular cavity occupation. This study provides a theoretical framework for understanding the biological functions of the SPSB family in crustacean ovarian maturation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多能小鼠胚胎干细胞(ESC)可以分化为所有胚层,并作为胚胎发育的体外模型。为了更好地理解ESC致力于不同谱系的分化路径,我们通过延时成像和多重高维成像质谱细胞计数(IMC)蛋白质定量来追踪个体分化的ESCs.这将5-6代的连续活单细胞分子NANOG和细胞动力学定量与观察终点相同单细胞中37种不同分子调节剂的蛋白质表达联系起来。使用这个独特的数据集,包括亲属关系历史和实时谱系标记检测,我们表明,NANOG下调发生在几代人之前,但不足以用于神经外胚层标记物Sox1的上调。我们鉴定了在体外共表达经典Sox1神经外胚层和FoxA2内胚层标志物的发育细胞类型,并确认了植入后胚胎中此类群体的存在。RNASeq揭示共表达SOX1和FOXA2的细胞具有独特的细胞状态,其特征在于内胚层和神经外胚层基因的表达,表明对两个胚层的谱系潜力。
    Pluripotent mouse embryonic stem cells (ESCs) can differentiate to all germ layers and serve as an in vitro model of embryonic development. To better understand the differentiation paths traversed by ESCs committing to different lineages, we track individual differentiating ESCs by timelapse imaging followed by multiplexed high-dimensional Imaging Mass Cytometry (IMC) protein quantification. This links continuous live single-cell molecular NANOG and cellular dynamics quantification over 5-6 generations to protein expression of 37 different molecular regulators in the same single cells at the observation endpoints. Using this unique data set including kinship history and live lineage marker detection, we show that NANOG downregulation occurs generations prior to, but is not sufficient for neuroectoderm marker Sox1 upregulation. We identify a developmental cell type co-expressing both the canonical Sox1 neuroectoderm and FoxA2 endoderm markers in vitro and confirm the presence of such a population in the post-implantation embryo. RNASeq reveals cells co-expressing SOX1 and FOXA2 to have a unique cell state characterized by expression of both endoderm as well as neuroectoderm genes suggesting lineage potential towards both germ layers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    天然多能性由包含核心和天然多能性特异性转录因子(TF)的自我增强基因调控网络(GRN)维持。在退出幼稚多能性后,胚胎干细胞(ESC)通过形成后植入样多能状态转变,他们获得血统选择的能力。然而,从幼稚GRN脱离和开始形成性GRN的潜在机制尚不清楚.这里,我们证明磷酸化AKT充当看门人,防止FoxOTFs在幼稚ESC中的核定位。PTEN介导的AKT活性从幼稚多能性退出后的降低允许FoxOTFs的核进入,通过结合和激活形成性多能性特异性增强子来实施细胞命运转变。的确,FoxOTF对于形成性多能性特异性GRN的激活是必要且足够的。我们的工作揭示了FoxOTF在建立形成性植入后多能性方面的关键作用,关键的早期胚胎细胞命运转变。
    Naïve pluripotency is sustained by a self-reinforcing gene regulatory network (GRN) comprising core and naïve pluripotency-specific transcription factors (TFs). Upon exiting naïve pluripotency, embryonic stem cells (ESCs) transition through a formative post-implantation-like pluripotent state, where they acquire competence for lineage choice. However, the mechanisms underlying disengagement from the naïve GRN and initiation of the formative GRN are unclear. Here, we demonstrate that phosphorylated AKT acts as a gatekeeper that prevents nuclear localisation of FoxO TFs in naïve ESCs. PTEN-mediated reduction of AKT activity upon exit from naïve pluripotency allows nuclear entry of FoxO TFs, enforcing a cell fate transition by binding and activating formative pluripotency-specific enhancers. Indeed, FoxO TFs are necessary and sufficient for the activation of the formative pluripotency-specific GRN. Our work uncovers a pivotal role for FoxO TFs in establishing formative post-implantation pluripotency, a critical early embryonic cell fate transition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在开发的第一周,人类胚胎形成由内部细胞团和滋养外胚层(TE)细胞组成的胚泡,后者是胎盘滋养层的祖细胞。这里,我们研究了从胚泡早期到晚期的人TE中转录本的表达。我们鉴定了转录因子GATA2,GATA3,TFAP2C和KLF5的富集,并表征了它们在TE发育过程中的蛋白质表达动力学。通过诱导型过表达和mRNA转染,我们确定这些因素,和MYC一起,足以从引发的人胚胎干细胞建立诱导的滋养层干细胞(iTSC)。这些iTSCs自我更新并概括了形态学特征,基因表达谱,和定向分化潜力,与现有的人类TSC相似。每个系统的遗漏,或多种因素的组合,揭示了GATA2和GATA3对iTSC转分化的重要性。总之,这些发现提供了对可能在人类TE中起作用的转录因子网络的见解,并拓宽了建立早期人类胎盘祖细胞细胞模型的方法,这可能在未来对胎盘相关疾病的模型是有用的。
    During the first week of development, human embryos form a blastocyst composed of an inner cell mass and trophectoderm (TE) cells, the latter of which are progenitors of placental trophoblast. Here, we investigated the expression of transcripts in the human TE from early to late blastocyst stages. We identified enrichment of the transcription factors GATA2, GATA3, TFAP2C and KLF5 and characterised their protein expression dynamics across TE development. By inducible overexpression and mRNA transfection, we determined that these factors, together with MYC, are sufficient to establish induced trophoblast stem cells (iTSCs) from primed human embryonic stem cells. These iTSCs self-renew and recapitulate morphological characteristics, gene expression profiles, and directed differentiation potential, similar to existing human TSCs. Systematic omission of each, or combinations of factors, revealed the crucial importance of GATA2 and GATA3 for iTSC transdifferentiation. Altogether, these findings provide insights into the transcription factor network that may be operational in the human TE and broaden the methods for establishing cellular models of early human placental progenitor cells, which may be useful in the future to model placental-associated diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    miR-31是一种高度保守的microRNA,在细胞增殖中起着至关重要的作用。迁移和分化。我们发现miR-31及其一些经过验证的靶标富集在分裂的海胆胚胎和哺乳动物细胞的有丝分裂纺锤体上。利用海胆胚胎,我们发现miR-31抑制导致发育延迟与细胞骨架和染色体缺陷增加相关.我们确定miR-31直接抑制几种肌动蛋白重塑转录本,包括β-肌动蛋白,Gelsolin,Rab35和Fascin.Fascin的从头翻译发生在海胆胚胎和哺乳动物细胞的有丝分裂纺锤体。重要的是,miR-31抑制导致在分裂的海胆胚胎的纺锤体上新翻译的Fascin的显著增加。Fascin转录本被迫异位定位到细胞膜和翻译导致显著的发育和染色体分离缺陷,强调miR-31在有丝分裂纺锤体调节局部翻译以确保正确的细胞分裂的重要性。此外,miR-31介导的有丝分裂纺锤体的转录后调控可能是有丝分裂的进化保守调控范式。
    miR-31 is a highly conserved microRNA that plays crucial roles in cell proliferation, migration and differentiation. We discovered that miR-31 and some of its validated targets are enriched on the mitotic spindle of the dividing sea urchin embryo and mammalian cells. Using the sea urchin embryo, we found that miR-31 inhibition led to developmental delay correlated with increased cytoskeletal and chromosomal defects. We identified miR-31 to directly suppress several actin remodeling transcripts, including β-actin, Gelsolin, Rab35 and Fascin. De novo translation of Fascin occurs at the mitotic spindle of sea urchin embryos and mammalian cells. Importantly, miR-31 inhibition leads to a significant a increase of newly translated Fascin at the spindle of dividing sea urchin embryos. Forced ectopic localization of Fascin transcripts to the cell membrane and translation led to significant developmental and chromosomal segregation defects, highlighting the importance of the regulation of local translation by miR-31 at the mitotic spindle to ensure proper cell division. Furthermore, miR-31-mediated post-transcriptional regulation at the mitotic spindle may be an evolutionarily conserved regulatory paradigm of mitosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    In reptiles, such as the red-eared slider turtle ( Trachemys scripta elegans), gonadal sex determination is highly dependent on the environmental temperature during embryonic stages. This complex process, which leads to differentiation into either testes or ovaries, is governed by the finely tuned expression of upstream genes, notably the testis-promoting gene Dmrt1 and the ovary-promoting gene Foxl2. Recent studies have identified epigenetic regulation as a crucial factor in testis development, with the H3K27me3 demethylase KDM6B being essential for Dmrt1 expression in T. s. elegans. However, whether KDM6B alone can induce testicular differentiation remains unclear. In this study, we found that overexpression of Kdm6b in T. s. elegans embryos induced the male development pathway, accompanied by a rapid increase in the gonadal expression of Dmrt1 at 31°C, a temperature typically resulting in female development. Notably, this sex reversal could be entirely rescued by Dmrt1 knockdown. These findings demonstrate that Kdm6b is sufficient for commitment to the male pathway, underscoring its role as a critical epigenetic regulator in the sex determination of the red-eared slider turtle.
    许多爬行动物(如红耳龟)的性别取决于胚胎发育的环境温度。该性别决定过程涉及一系列上游基因如促睾丸分化的 Dmrt1及促卵巢分化的 Foxl2的精细调控。作者前期研究表明,组蛋白去甲基化酶KDM6B的表达是直接激活 Dmrt1转录的必要条件。然而,KDM6B是否能单独诱导睾丸分化尚不清楚。在该研究中,我们发现在产雌温度下对红耳龟胚胎进行 Kdm6b过表达会迅速上调性腺中 Dmrt1的表达,并诱导性腺分化为睾丸。此外,敲低 Dmrt1能够阻断 Kdm6b过表达导致的雌向雄性逆转过程,性腺最终仍发育成卵巢。实验结果表明 Kdm6b通过上调 Dmrt1使性腺发育成睾丸。因此,KDM6B是红耳龟性别决定过程中的关键表观遗传调控因子。.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    PHD2对于调节氧波动时的HIF-1α水平至关重要。缺氧,子宫的标志,和HIF-1α最近已成为中内胚层规格的相反调节剂,暗示PHD2在其中的作用。我们发现PHD2表达最初覆盖了上胚层,并逐渐从原始条纹消退,与缺氧相同,HIF-1α除外。在mESC中进行的调查,胚状体,和小鼠胚胎共同证明PHD2负调节中内胚层的规格。单细胞RNA测序显示PHD2控制了从上胚层到中内胚层的转变。PHD2的下游作用依赖于HIF-1α调节的Wnt/β-catenin通路,而它在上游受miR-429调控。总之,我们的研究强调了PHD2在中内胚层特化中的重要作用及其与缺氧和HIF-1α的相互作用。
    PHD2 is essential in modulating HIF-1α levels upon oxygen fluctuations. Hypoxia, a hallmark of uterus, and HIF-1α have recently emerged as opposing regulators of mesendoderm specification, suggesting a role for PHD2 therein. We found that PHD2 expression initially covered the epiblast and gradually receded from the primitive streak, which was identical to hypoxia and exclusive to HIF-1α. The investigations performed in mESCs, embryoids, and mouse embryos together demonstrated that PHD2 negatively regulated mesendoderm specification. Single-cell RNA sequencing revealed that PHD2 governed the transition from epiblast to mesendoderm. The downstream effect of PHD2 relied on the HIF-1α regulated Wnt/β-catenin pathway, while it was regulated upstream by miR-429. In summary, our research highlights PHD2\'s essential role in mesendoderm specification and its interactions with hypoxia and HIF-1α.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:斑点蛇头(Channamaculata)表现出明显的性二态性,与女性相比,男性表现出更快的生长速度和更大的体型。全男性蛇头种群的种植具有巨大的经济和生态价值。尽管如此,控制双潜能性腺发育进入睾丸或卵巢的复杂过程。因此,有必要确定黄斑蟹性别分化的关键时间窗,为生产实践中的性别控制提供理论依据。
    方法:在不同的发育阶段测量了雄性和雌性C.maculata的身长和体重,以揭示生长中的性二态性最初何时出现。对各个发育阶段的卵巢和睾丸进行了组织学观察和时空比较转录组分析,以确定每种性别和性别相关基因性别分化的关键时间窗口。此外,qPCR和MG2C用于验证和定位性别相关基因,对E2和T的水平进行定量,以了解性类固醇的合成。
    结果:从90dpf开始,生长中的性二态性变得明显。组织学观察显示,女性和男性的形态性别分化发生在20至25dpf或更早和30-35dpf或更早之间,分别,对应于卵巢腔或流出管的外观。转录组分析显示,30dpf后,睾丸和卵巢中的基因表达模式不同。40-60dpf和60-90dpf的时期标志着女性和男性分子性别分化的开始,分别。男性偏见基因(Sox11a,Dmrt1,Amh,Amhr2,Gsdf,Ar,Cyp17a2)可能在男性性别分化和精子发生中起关键作用,而女性偏向基因(Foxl2,Cyp19a1a,Bmp15,Figla,Er)可能在卵巢分化和发育中起关键作用。还鉴定了与性别分化和配子发生有关的许多生物学途径。此外,E2和T在性别分化和性腺发育过程中表现出性二态。基于这些结果,假设在C.maculata中,潜在的男性性别分化途径,Sox11a-Dmrt1-Sox9b,激活下游性别相关基因(Amh,Amhr2,Gsdf,Ar,Cyp17a2)用于睾丸发育,而拮抗途径,Foxl2/Cyp19a1a,激活下游性别相关基因(Bmp15,Figla,Er)用于卵巢发育。
    结论:本研究全面概述了黄斑梭菌性别分化和配子发生过程中的性腺动态变化,为该物种的性别控制奠定了科学基础。
    斑点蛇头(Channamaculata)表现出明显的性二态性,与女性相比,男性表现出更快的生长速度和更大的体型。全男性蛇头种群的种植具有巨大的经济和生态价值。然而,黄斑C的性别决定和分化的潜在机制仍未得到充分阐明。在这项研究中,从90dpf开始,通过测量不同发育阶段的雄性和雌性C.maculata的身长和体重,可以明显看出生长中的性二态性。组织学观察表明,女性和男性的形态性别分化发生在20-25dpf或更早和30-35dpf或更早,分别,对应于卵巢腔或流出管的外观。转录组分析显示30dpf后男性和女性性腺中不同的基因表达模式,这表明30dpf之前的时期可能是黄斑C的性别控制的关键时间窗口。40-60dpf和60-90dpf的时期标志着女性和男性分子性别分化的开始,分别。男性偏见基因(Sox11a,Dmrt1,Amh,Amhr2,Gsdf,Ar,Cyp17a2)可能在睾丸分化和精子发生中起关键作用,而女性偏向基因(Foxl2,Cyp19a1a,Bmp15,Figla,Er)可能在卵巢分化和卵子发生中起关键作用。此外,鉴定了许多与性别分化和配子发生相关的生物学途径。此外,在性腺分化和发育过程中,E2和T水平观察到性二态性。基于这些发现,假设在C.maculata中,潜在的男性性别分化途径,Sox11a-Dmrt1-Sox9b,激活下游性别相关基因(Amh,Amhr2,Gsdf,Ar,Cyp17a2)用于睾丸发育,而拮抗途径,Foxl2/Cyp19a1a,激活下游性别相关基因(Bmp15,Figla,Er)用于卵巢发育。这项研究提供了一个全面的概述,在性别分化和配子发生过程中性腺的动态变化。从而为该物种的性别控制奠定了科学基础。
    BACKGROUND: Blotched snakehead (Channa maculata) displays significant sexual dimorphism, with males exhibiting faster growth rates and larger body sizes compared to females. The cultivation of the all-male population of snakeheads holds substantial economic and ecological value. Nonetheless, the intricate processes governing the development of bipotential gonads into either testis or ovary in C. maculata remain inadequately elucidated. Therefore, it is necessary to determine the critical time window of sex differentiation in C. maculata, providing a theoretical basis for sex control in production practices.
    METHODS: The body length and weight of male and female C. maculata were measured at different developmental stages to reveal when sexual dimorphism in growth initially appears. Histological observations and spatiotemporal comparative transcriptome analyses were performed on ovaries and testes across various developmental stages to determine the crucial time windows for sex differentiation in each sex and the sex-related genes. Additionally, qPCR and MG2C were utilized to validate and locate sex-related genes, and levels of E2 and T were quantified to understand sex steroid synthesis.
    RESULTS: Sexual dimorphism in growth became evident starting from 90 dpf. Histological observations revealed that morphological sex differentiation in females and males occurred between 20 and 25 dpf or earlier and 30-35 dpf or earlier, respectively, corresponding to the appearance of the ovarian cavity or efferent duct anlage. Transcriptome analyses revealed divergent gene expression patterns in testes and ovaries after 30 dpf. The periods of 40-60 dpf and 60-90 dpf marked the initiation of molecular sex differentiation in females and males, respectively. Male-biased genes (Sox11a, Dmrt1, Amh, Amhr2, Gsdf, Ar, Cyp17a2) likely play crucial roles in male sex differentiation and spermatogenesis, while female-biased genes (Foxl2, Cyp19a1a, Bmp15, Figla, Er) could be pivotal in ovarian differentiation and development. Numerous biological pathways linked to sex differentiation and gametogenesis were also identified. Additionally, E2 and T exhibited sexual dimorphism during sex differentiation and gonadal development. Based on these results, it is hypothesized that in C. maculata, the potential male sex differentiation pathway, Sox11a-Dmrt1-Sox9b, activates downstream sex-related genes (Amh, Amhr2, Gsdf, Ar, Cyp17a2) for testicular development, while the antagonistic pathway, Foxl2/Cyp19a1a, activates downstream sex-related genes (Bmp15, Figla, Er) for ovarian development.
    CONCLUSIONS: This study provides a comprehensive overview of gonadal dynamic changes during sex differentiation and gametogenesis in C. maculata, establishing a scientific foundation for sex control in this species.
    Blotched snakehead (Channa maculata) exhibits significant sexual dimorphism, as males display faster growth rates and larger body sizes compared to females. The cultivation of the all-male population of snakeheads holds substantial economic and ecological value. However, the mechanisms underlying sex determination and differentiation in C. maculata remain insufficiently elucidated. In this study, sexual dimorphism in growth became evident starting from 90 dpf through the measurement of body length and weight of male and female C. maculata at different developmental stages. Histological observations indicated that morphological sex differentiation in females and males occurred at 20–25 dpf or earlier and 30–35 dpf or earlier, respectively, corresponding to the appearance of the ovarian cavity or efferent duct anlage. Transcriptome analyses revealed divergent gene expression patterns in male and female gonads after 30 dpf, suggesting that the period preceding 30 dpf might be the critical time window for sex control in C. maculata. The periods of 40–60 dpf and 60–90 dpf marked the initiation of molecular sex differentiation in females and males, respectively. Male-biased genes (Sox11a, Dmrt1, Amh, Amhr2, Gsdf, Ar, Cyp17a2) likely play crucial roles in testicular differentiation and spermatogenesis, while female-biased genes (Foxl2, Cyp19a1a, Bmp15, Figla, Er) could be pivotal in ovarian differentiation and oogenesis. Additionally, numerous biological pathways linked to sex differentiation and gametogenesis were identified. Moreover, sexual dimorphism was observed in the levels of E2 and T during gonadal differentiation and development. Based on these findings, it is hypothesized that in C. maculata, the potential male sex differentiation pathway, Sox11a–Dmrt1–Sox9b, activates downstream sex-related genes (Amh, Amhr2, Gsdf, Ar, Cyp17a2) for testicular development, while the antagonistic pathway, Foxl2/Cyp19a1a, activates downstream sex-related genes (Bmp15, Figla, Er) for ovarian development. This study provides a comprehensive overview of gonadal dynamic changes during sex differentiation and gametogenesis in C. maculata, thereby establishing a scientific foundation for sex control in this species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号