gene conversion

基因转换
  • 文章类型: Journal Article
    CRISPR-Cas9归巢基因驱动器旨在诱导野生型等位基因(“受体”)的靶向双链DNA断裂,which,当被宿主细胞修复时,从同源(\'供体\')染色体转换为驱动等位基因。该过程的种系定位导致驱动的超孟德尔遗传和连锁性状的快速传播,通过故意释放驱动个体,提供了一种新的人口控制策略。在基于同源性的DNA修复过程中,受体染色体的其他片段可能会转化为匹配供体,可能会影响运营商的健康和战略成功。使用冈比亚按蚊菌株在驱动目标部位周围有变化,在这里,我们评估染色体转换的程度和性质。我们证明归巢和减数分裂驱动都是遗传偏见的机制。此外,超过80%的归巢事件在染色体断裂的50bp内解决,使基因驱动快速转移到当地适应的遗传背景。
    CRISPR-Cas9 homing gene drives are designed to induce a targeted double-stranded DNA break at a wild type allele (\'recipient\'), which, when repaired by the host cell, is converted to the drive allele from the homologous (\'donor\') chromosome. Germline localisation of this process leads to super-Mendelian inheritance of the drive and the rapid spread of linked traits, offering a novel strategy for population control through the deliberate release of drive individuals. During the homology-based DNA repair, additional segments of the recipient chromosome may convert to match the donor, potentially impacting carrier fitness and strategy success. Using Anopheles gambiae strains with variations around the drive target site, here we assess the extent and nature of chromosomal conversion. We show both homing and meiotic drive contribute as mechanisms of inheritance bias. Additionally, over 80% of homing events resolve within 50 bp of the chromosomal break, enabling rapid gene drive transfer into locally-adapted genetic backgrounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:分析异源多倍体基因组的一个复杂因素是减数分裂过程中同源染色体之间的物理相互作用的可能性,产生交叉(同源交换)或非交叉产物(同源基因转化)。通过比较来自两个二倍体祖细胞的序列中的SNP模式与来自异源多倍体亚基因组的序列中的SNP模式,首先在棉花中描述了同源基因转换。这些分析,然而,没有明确考虑其他可能导致与同源基因转换相似的SNP模式的进化情景,对推断的基因转换事件的真实性产生不确定性。
    方法:这里,我们使用来自七个异源多倍体棉属物种(全部来自相同的多倍体事件)的高质量基因组组装的扩展系统发育采样,四个二倍体物种(两个与每个亚基因组密切相关),和二倍体外群,以得出一种可靠的方法,用于识别基因转换和同源交换的潜在基因组区域。
    结果:我们发现在异源多倍体棉花中几乎没有同源基因转化的证据,在40个最受支持的事件中,只有两个被多个物种共享。我们做到了,然而,揭示一个单一的,在1号染色体的一端共享同源交换事件,该事件发生在异源多倍化后不久,但在后代物种分歧之前。
    结论:总体而言,我们的分析表明,同源基因转换和同源交换在棉属中并不常见,在七个物种中,每个亚基因组影响零至24个基因(0.0-0.065%)。更一般地说,我们强调了使用简单的四分类单元测试来研究已建立的异源多倍体中同源基因转换模式的潜在问题。
    OBJECTIVE: A complicating factor in analyzing allopolyploid genomes is the possibility of physical interactions between homoeologous chromosomes during meiosis, resulting in either crossover (homoeologous exchanges) or non-crossover products (homoeologous gene conversion). Homoeologous gene conversion was first described in cotton by comparing SNP patterns in sequences from two diploid progenitors with those from the allopolyploid subgenomes. These analyses, however, did not explicitly consider other evolutionary scenarios that may give rise to similar SNP patterns as homoeologous gene conversion, creating uncertainties about the reality of the inferred gene conversion events.
    METHODS: Here, we use an expanded phylogenetic sampling of high-quality genome assemblies from seven allopolyploid Gossypium species (all derived from the same polyploidy event), four diploid species (two closely related to each subgenome), and a diploid outgroup to derive a robust method for identifying potential genomic regions of gene conversion and homoeologous exchange.
    RESULTS: We found little evidence for homoeologous gene conversion in allopolyploid cottons, and that only two of the 40 best-supported events were shared by more than one species. We did, however, reveal a single, shared homoeologous exchange event at one end of chromosome 1, which occurred shortly after allopolyploidization but prior to divergence of the descendant species.
    CONCLUSIONS: Overall, our analyses demonstrated that homoeologous gene conversion and homoeologous exchanges are uncommon in Gossypium, affecting between zero and 24 genes per subgenome (0.0-0.065%) across the seven species. More generally, we highlighted the potential problems of using simple four-taxon tests to investigate patterns of homoeologous gene conversion in established allopolyploids.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质水平的功能创新是进化新颖性的关键来源。对功能创新的限制可能在不同的蛋白质中具有高度特异性,它们是由它们独特的历史和从它们的结构和生物化学中产生的全球认识论的程度塑造的。序列-功能关系中的这些上下文细微差别对于对进化过程的基本理解以及对具有理想特性的工程蛋白质都具有意义。这里,我们已经研究了古代模型成员的新功能的分子基础,保守的,和生物技术相关的蛋白质家族。这些主要的促进者超家族糖转运蛋白是一组功能多样的蛋白质,被认为是高度可塑性和可进化的。通过解剖酵母酵母中α-葡糖苷转运蛋白的最新进化创新,我们表明,转运新底物的能力需要许多蛋白质区域与转运通道附近的许多特定残基之间的高阶相互作用。为了调和该家族的功能多样性与该模型蛋白质的受限进化,我们产生了新的,332种酵母菌种的最新基因组注释,跨越约4亿年的进化。通过整合这些物种的系统发育和表型分析,我们表明,模型酵母α-葡糖苷转运蛋白可能是从多功能祖先进化而来的,并成为亚功能化的。加性和上位性替代的积累可能使这一子功能根深蒂固,这使得同时获取多个交互替换成为唯一合理获取新颖性的途径。
    Functional innovation at the protein level is a key source of evolutionary novelties. The constraints on functional innovations are likely to be highly specific in different proteins, which are shaped by their unique histories and the extent of global epistasis that arises from their structures and biochemistries. These contextual nuances in the sequence-function relationship have implications both for a basic understanding of the evolutionary process and for engineering proteins with desirable properties. Here, we have investigated the molecular basis of novel function in a model member of an ancient, conserved, and biotechnologically relevant protein family. These Major Facilitator Superfamily sugar porters are a functionally diverse group of proteins that are thought to be highly plastic and evolvable. By dissecting a recent evolutionary innovation in an α-glucoside transporter from the yeast Saccharomyces eubayanus, we show that the ability to transport a novel substrate requires high-order interactions between many protein regions and numerous specific residues proximal to the transport channel. To reconcile the functional diversity of this family with the constrained evolution of this model protein, we generated new, state-of-the-art genome annotations for 332 Saccharomycotina yeast species spanning approximately 400 million years of evolution. By integrating phylogenetic and phenotypic analyses across these species, we show that the model yeast α-glucoside transporters likely evolved from a multifunctional ancestor and became subfunctionalized. The accumulation of additive and epistatic substitutions likely entrenched this subfunction, which made the simultaneous acquisition of multiple interacting substitutions the only reasonably accessible path to novelty.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    当适应性表型变异或QTLs在染色体的反向片段内定位时,研究人员经常感到绝望,因为抑制交叉将阻止发现建立重排的选择性靶基因。如果反转多态性足够老,然后,基因转换束的积累提供了可以定位倒位中的QTL或选定基因座的希望。果蝇的倒位多态性是一个模型系统,表明基因转换分析是在倒位中定位选定基因座的有用工具。假D.在自然种群中,第三染色体(MullerC)上有30多种不同的染色体排列,其频率随环境栖息地的变化而变化。对五个假D.pseudoobskura基因排列的统计测试确定了反向区域内的异常基因,这些基因具有潜在的可遗传变异,固定氨基酸差异或差异表达模式。我们使用反向第三染色体(MullerC)的基因组序列推断98,443个基因转换束,总覆盖率为142Mb或19.7Mb染色体的7.2x覆盖率。我们估计了MullerC上2,668个基因的基因转换道覆盖率,并测试了异常位点与非异常位点的排列之间的基因转换覆盖率是否相似。离群基因在排列中的基因转换道覆盖率低于非离群基因,这表明选择会去除离群基因中交换的DNA。这些数据支持这样的假设,即在倒位突变事件发生之前,假双峰中的第三条染色体捕获了局部适应的等位基因组合。
    When adaptive phenotypic variation or QTLs map within an inverted segment of a chromosome, researchers often despair because the suppression of crossing over will prevent the discovery of selective target genes that established the rearrangement. If an inversion polymorphism is old enough, then the accumulation of gene conversion tracts offers the promise that QTLs or selected loci within inversions can be mapped. The inversion polymorphism of Drosophila pseudoobscura is a model system to show that gene conversion analysis is a useful tool for mapping selected loci within inversions. D. pseudoobscura has over 30 different chromosomal arrangements on the third chromosome (Muller C) in natural populations and their frequencies vary with changes in environmental habitats. Statistical tests of five D. pseudoobscura gene arrangements identified outlier genes within inverted regions that had potentially heritable variation, either fixed amino acid differences or differential expression patterns. We use genome sequences of the inverted third chromosome (Muller C) to infer 98,443 gene conversion tracts for a total coverage of 142 Mb or 7.2 x coverage of the 19.7 Mb chromosome. We estimated gene conversion tract coverage in the 2,668 genes on Muller C and tested whether gene conversion coverage was similar among arrangements for outlier versus non-outlier loci. Outlier genes had lower gene conversion tract coverage among arrangements than the non-outlier genes suggesting that selection removes exchanged DNA in the outlier genes. These data support the hypothesis that the third chromosome in D. pseudoobscura captured locally adapted combinations of alleles prior to inversion mutation events.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    模式卤代古菌Haloferax火山是多倍体,其主要染色体约有20个拷贝。最近,已经描述了高效的分子间基因转化在H.volusii中进行,以使染色体拷贝相等。在目前的研究中,选择了24个基因,这些基因编码与古细菌中基因转换或同源重组有关的直向同源蛋白,细菌,或者真核生物.在两个亲本菌株中构建了22个基因和一个对照基因的单基因缺失菌株,用于基因转换测定;只有radA和radB被证明是必需的。原生质体融合体用于产生基因HVO_2528杂合的菌株,其编码类胡萝卜素生物合成的酶。研究表明,缺乏六种蛋白质不会影响基因转换的效率,而16个突变体有严重的基因转换缺陷。值得注意的是,缺乏基因家族的旁系蛋白质产生了非常不同的影响,例如,突变体Δrad25b没有表型,而突变体Δrad25a,Δrad25c,和Δrad25d高度受损。四重rad25和三sph缺失菌株的产生也表明旁系同源物具有不同的功能,与sph2和sph4相反,它们不能同时删除。在非应激条件下,表型的严重程度与各自的转录水平之间没有相关性,表明基因表达必须在基因转换开始时被诱导。蛋白质家族Rad3/25,MutL/S,和Sph/SMC/Rad50的产生揭示了火山旁系蛋白质的历史。一起来看,未选择的分子间基因转化涉及至少16种不同的蛋白质,其分子作用可以在未来的项目中详细研究。
    The model haloarchaeon Haloferax volcanii is polyploid with about 20 copies of its major chromosome. Recently it has been described that highly efficient intermolecular gene conversion operates in H. volcanii to equalize the chromosomal copies. In the current study, 24 genes were selected that encode proteins with orthologs involved in gene conversion or homologous recombination in archaea, bacteria, or eukaryotes. Single gene deletion strains of 22 genes and a control gene were constructed in two parent strains for a gene conversion assay; only radA and radB were shown to be essential. Protoplast fusions were used to generate strains that were heterozygous for the gene HVO_2528, encoding an enzyme for carotinoid biosynthesis. It was revealed that a lack of six of the proteins did not influence the efficiency of gene conversion, while sixteen mutants had severe gene conversion defects. Notably, lack of paralogous proteins of gene families had very different effects, e.g., mutant Δrad25b had no phenotype, while mutants Δrad25a, Δrad25c, and Δrad25d were highly compromised. Generation of a quadruple rad25 and a triple sph deletion strain also indicated that the paralogs have different functions, in contrast to sph2 and sph4, which cannot be deleted simultaneously. There was no correlation between the severity of the phenotypes and the respective transcript levels under non-stressed conditions, indicating that gene expression has to be induced at the onset of gene conversion. Phylogenetic trees of the protein families Rad3/25, MutL/S, and Sph/SMC/Rad50 were generated to unravel the history of the paralogous proteins of H. volcanii. Taken together, unselected intermolecular gene conversion in H. volcanii involves at least 16 different proteins, the molecular roles of which can be studied in detail in future projects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    平衡选择的作用是一个长期存在的进化难题。平衡选择是一个至关重要的进化过程,可以在很长一段时间内保持遗传变异(多态性);然而,检测它提出了一个重大挑战。基于根植于Moran模型的多态性感知系统发育模型(PoMos)框架,我们引入了PoMoBalance模型。这种新颖的方法旨在解开突变的相互作用,遗传漂移,定向选择(GC偏向基因转换),通过分析多个体基因组和系统发育差异数据,以及与物种差异时间相当的超长时间尺度上先前未探索的平衡选择压力。在开源的RevBayes贝叶斯框架中实现,PoMoBalance提供了一个多功能的工具,用于推断系统发育树以及量化各种选择压力。我们研究平衡选择的方法的新颖方面在于PoMos能够解释祖先的多态性,并纳入测量频率依赖性选择的参数。允许我们确定效果的强度和所选择的确切频率。我们实施了验证测试,并在使用SLiM和自定义Moran模型模拟器模拟的数据上评估了模型。果蝇种群的真实序列分析揭示了对频率依赖性平衡选择区域的进化动态的见解,特别是在果蝇直立的性别有限的颜色二态的情况下。
    The role of balancing selection is a long-standing evolutionary puzzle. Balancing selection is a crucial evolutionary process that maintains genetic variation (polymorphism) over extended periods of time; however, detecting it poses a significant challenge. Building upon the Polymorphism-aware phylogenetic Models (PoMos) framework rooted in the Moran model, we introduce a PoMoBalance model. This novel approach is designed to disentangle the interplay of mutation, genetic drift, and directional selection (GC-biased gene conversion), along with the previously unexplored balancing selection pressures on ultra-long timescales comparable with species divergence times by analyzing multi-individual genomic and phylogenetic divergence data. Implemented in the open-source RevBayes Bayesian framework, PoMoBalance offers a versatile tool for inferring phylogenetic trees as well as quantifying various selective pressures. The novel aspect of our approach in studying balancing selection lies in polymorphism-aware phylogenetic models\' ability to account for ancestral polymorphisms and incorporate parameters that measure frequency-dependent selection, allowing us to determine the strength of the effect and exact frequencies under selection. We implemented validation tests and assessed the model on the data simulated with SLiM and a custom Moran model simulator. Real sequence analysis of Drosophila populations reveals insights into the evolutionary dynamics of regions subject to frequency-dependent balancing selection, particularly in the context of sex-limited color dimorphism in Drosophila erecta.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    长读测序,以PacBio为例,彻底改变了基因组学,克服重复序列等挑战。然而,高DNA需求(>1µg)是禁止小生物。我们开发了一种低输入(100纳克),低成本,和PacBio测序(LILAP)的无扩增文库生成方法,使用基于Tn5的标签化和一个管中的DNA环化。我们用两个果蝇个体测试LILAP,并产生接近完整的基因组,超越先前存在的单飞基因组。通过分析这两个基因组的变异,我们表征了突变过程:复杂的转座(转座子插入以及额外的重复和/或缺失)优选以非BDNA结构表征的区域,转座子的基因转换发生在DNA和RNA水平上。同时,我们为这些果蝇中的内共生细菌Wolbachia生成了两个完整的组件,并类似地检测了转座子的转换。因此,LILAP承诺广泛采用PacBio测序,不仅用于苍蝇及其共生体的突变研究,而且还用于其他小生物或珍贵样品的探索。
    Long-read sequencing, exemplified by PacBio, revolutionizes genomics, overcoming challenges like repetitive sequences. However, the high DNA requirement ( > 1 µg) is prohibitive for small organisms. We develop a low-input (100 ng), low-cost, and amplification-free library-generation method for PacBio sequencing (LILAP) using Tn5-based tagmentation and DNA circularization within one tube. We test LILAP with two Drosophila melanogaster individuals, and generate near-complete genomes, surpassing preexisting single-fly genomes. By analyzing variations in these two genomes, we characterize mutational processes: complex transpositions (transposon insertions together with extra duplications and/or deletions) prefer regions characterized by non-B DNA structures, and gene conversion of transposons occurs on both DNA and RNA levels. Concurrently, we generate two complete assemblies for the endosymbiotic bacterium Wolbachia in these flies and similarly detect transposon conversion. Thus, LILAP promises a broad PacBio sequencing adoption for not only mutational studies of flies and their symbionts but also explorations of other small organisms or precious samples.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    减数分裂重组是有性繁殖物种的基本特征。它通常是正确的染色体分离所必需的,并且在适应和维持遗传多样性中起着重要作用。重组的分子机制在真核生物中非常保守,然而,减数分裂基因和蛋白质在其序列和功能上显示出实质性的差异,甚至在密切相关的物种之间。此外,重组的速率和分布显示了染色体内部和染色体之间的巨大差异,个人,性别,人口,和物种。这种变化对许多分子和进化过程都有影响,然而,这种多样性是如何以及为什么进化的,目前还没有得到很好的理解。理解性状进化的关键步骤是确定其遗传基础——即,号码,效果大小,和支持变异的基因座分布。从这个角度来看,我讨论了过去和现在关于重组率和分布变异的遗传基础的知识,探索其进化意义,并为未来的研究提出悬而未决的问题。
    Meiotic recombination is a fundamental feature of sexually reproducing species. It is often required for proper chromosome segregation and plays important role in adaptation and the maintenance of genetic diversity. The molecular mechanisms of recombination are remarkably conserved across eukaryotes, yet meiotic genes and proteins show substantial variation in their sequence and function, even between closely related species. Furthermore, the rate and distribution of recombination shows a huge diversity within and between chromosomes, individuals, sexes, populations, and species. This variation has implications for many molecular and evolutionary processes, yet how and why this diversity has evolved is not well understood. A key step in understanding trait evolution is to determine its genetic basis-that is, the number, effect sizes, and distribution of loci underpinning variation. In this perspective, I discuss past and current knowledge on the genetic basis of variation in recombination rate and distribution, explore its evolutionary implications, and present open questions for future research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    主要组织相容性复合物(MHC)多基因家族编码脊椎动物适应性免疫系统的关键病原体识别分子。MHC基因的超多态性是由点突变从头产生的,但是新的单倍型也可能通过基因座内和基因座间基因转换对现有变异进行重新改组而产生。尽管MHC基因转换的发生已有数十年的历史,我们对其功能重要性的理解仍然有限。这里,我利用广泛的遗传资源(〜9000序列)研究了近200种鸟类在MHC基因转换过程中的广泛宏观进化模式。基因转换在鸟类中被发现是一种普遍的机制,因为83%的物种在任一MHC类别显示基因转换的足迹,所有等位基因变异中有25%归因于基因转换.MHC-II的基因转换过程强于MHC-I,但是两种MHC类别的特异性变异被相似的进化情景解释,反映对不同最优和漂移的波动选择。基因转换在鸟类中显示出不均匀的系统发育分布,并且受基因拷贝数变异的驱动,支持基因座间基因转换过程在禽类MHC进化中的重要作用。最后,在具有快速生活史(高繁殖力)和远距离移民的物种中,MHC基因转换更强。可能反映了种群规模和宿主-病原体共进化动力学的变化。结果为理解禽类MHC基因转换中的宏观进化变异提供了一个强大的比较框架,并加强了该机制对功能MHC多样性的重要贡献。
    The major histocompatibility complex (MHC) multigene family encodes key pathogen-recognition molecules of the vertebrate adaptive immune system. Hyper-polymorphism of MHC genes is de novo generated by point mutations, but new haplotypes may also arise by re-shuffling of existing variation through intra- and inter-locus gene conversion. Although the occurrence of gene conversion at the MHC has been known for decades, we still have limited understanding of its functional importance. Here, I took advantage of extensive genetic resources (~9000 sequences) to investigate broad scale macroevolutionary patterns in gene conversion processes at the MHC across nearly 200 avian species. Gene conversion was found to constitute a universal mechanism in birds, as 83% of species showed footprints of gene conversion at either MHC class and 25% of all allelic variants were attributed to gene conversion. Gene conversion processes were stronger at MHC-II than MHC-I, but inter-specific variation at both MHC classes was explained by similar evolutionary scenarios, reflecting fluctuating selection towards different optima and drift. Gene conversion showed uneven phylogenetic distribution across birds and was driven by gene copy number variation, supporting significant role of inter-locus gene conversion processes in the evolution of the avian MHC. Finally, MHC gene conversion was stronger in species with fast life histories (high fecundity) and in long-distance migrants, likely reflecting variation in population sizes and host-pathogen coevolutionary dynamics. The results provide a robust comparative framework for understanding macroevolutionary variation in gene conversion at the avian MHC and reinforce important contribution of this mechanism to functional MHC diversity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    减数分裂交换在大多数有性繁殖生物的正确染色体分离和进化中起着至关重要的作用。减数分裂重组可以在酿酒酵母中使用以确定的间隔放置在基因组中的连锁孢子自主荧光标记进行视觉观察。它允许分析减数分裂分离,而不需要进行四分体解剖。要自动化分析,我们开发了基于深度学习的图像识别和分类管道,用于高通量四分体检测和减数分裂交叉分类。作为概念的证明,我们分析了来自野生型和选定基因敲除突变体的大量图像数据集,以量化交叉频率,干扰,染色体不分离,和基因转换事件。基于深度学习的方法有可能加速发现与酿酒酵母减数分裂重组有关的新基因,例如控制交叉频率和干扰的潜在因素。
    Meiotic crossovers play a vital role in proper chromosome segregation and evolution of most sexually reproducing organisms. Meiotic recombination can be visually observed in Saccharomyces cerevisiae tetrads using linked spore-autonomous fluorescent markers placed at defined intervals within the genome, which allows for analysis of meiotic segregation without the need for tetrad dissection. To automate the analysis, we developed a deep learning-based image recognition and classification pipeline for high-throughput tetrad detection and meiotic crossover classification. As a proof of concept, we analyzed a large image data set from wild-type and selected gene knock-out mutants to quantify crossover frequency, interference, chromosome missegregation, and gene conversion events. The deep learning-based method has the potential to accelerate the discovery of new genes involved in meiotic recombination in S. cerevisiae such as the underlying factors controlling crossover frequency and interference.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号