gasdermin

gasdermin
  • 文章类型: Journal Article
    Gasdermin介导的炎性细胞死亡(焦亡)可以在免疫冷肿瘤中激活保护性免疫。这里,我们对可以激活gasderminD(GSDMD)的化合物进行了高通量筛选,在肿瘤中广泛表达。我们确定了6,7-二氯-2-甲基磺酰基-3-N-叔丁基氨基喹喔啉(DMB)作为直接和选择性的GSDMD激动剂,可激活GSDMD孔形成和焦亡而不裂解GSDMD。在小鼠肿瘤模型中,DMB诱导的脉冲和低水平的焦亡抑制肿瘤生长而不损害表达GSDMD的免疫细胞。保护是免疫介导的,在缺乏淋巴细胞的小鼠中被废除。用DMB处理的癌细胞接种疫苗可保护小鼠免受继发性肿瘤攻击,表明免疫原性细胞死亡被诱导。DMB治疗与抗PD-1协同作用。DMB治疗不会改变循环的促炎细胞因子或白细胞数量或导致体重减轻。因此,我们的研究揭示了一种策略,该策略依赖于低水平的肿瘤细胞焦亡来诱导抗肿瘤免疫,并提高了利用焦亡而不引起明显毒性的可能性。
    Gasdermin-mediated inflammatory cell death (pyroptosis) can activate protective immunity in immunologically cold tumors. Here, we performed a high-throughput screen for compounds that could activate gasdermin D (GSDMD), which is expressed widely in tumors. We identified 6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline (DMB) as a direct and selective GSDMD agonist that activates GSDMD pore formation and pyroptosis without cleaving GSDMD. In mouse tumor models, pulsed and low-level pyroptosis induced by DMB suppresses tumor growth without harming GSDMD-expressing immune cells. Protection is immune-mediated and abrogated in mice lacking lymphocytes. Vaccination with DMB-treated cancer cells protects mice from secondary tumor challenge, indicating that immunogenic cell death is induced. DMB treatment synergizes with anti-PD-1. DMB treatment does not alter circulating proinflammatory cytokine or leukocyte numbers or cause weight loss. Thus, our studies reveal a strategy that relies on a low level of tumor cell pyroptosis to induce antitumor immunity and raise the possibility of exploiting pyroptosis without causing overt toxicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肿瘤免疫疗法的当代进展巩固了其作为对抗癌症的有效方法的作用。尽管如此,肿瘤微环境中普遍存在的“免疫冷”状态对其疗效构成了实质性障碍。解决这个问题,焦亡-一种以炎症特征为特征的gasdermin介导的程序性细胞死亡-成为关键机制。它催化大量促炎细胞因子和免疫原的释放,可能将免疫抑制性“冷”肿瘤转化为反应性“热”肿瘤。在这里,我们将首先概述焦亡作为细胞死亡的一种独特形式,以及它的分子机制。随后,我们将重点介绍焦亡激活剂在肿瘤免疫治疗领域的应用。从焦亡激活剂在肿瘤免疫治疗中的应用中获得的见解可能导致安全有效的焦亡激活剂的开发。显着丰富了肿瘤免疫治疗的武器库。
    Contemporary progress in tumor immunotherapy has solidified its role as an effective approach in combating cancer. Nonetheless, the prevalent \"immune cold\" state within the tumor microenvironment poses a substantial barrier to its efficacy. Addressing this, pyroptosis-a gasdermin-mediated programmed cell death characterized by its inflammatory profile-emerges as a crucial mechanism. It catalyzes the release of vast quantities of pro-inflammatory cytokines and immunogens, potentially transforming immunosuppressive \"cold\" tumors into reactive \"hot\" ones. Herein, we will initially present an overview of pyroptosis as a distinct form of cell death, along with its molecular mechanisms. Subsequently, we will focus on introducing how pyroptosis activators are utilized in the field of tumor immunotherapy. Insights gained from applications of pyroptosis activators in tumor immunotherapy could lead to the development of safe and efficient pyroptosis activators, significantly enriching the arsenal for tumor immunotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    焦亡,一种由gasdermin家族介导的细胞死亡的裂解形式,以细胞肿胀和膜破裂为特征。诱导癌细胞中的焦亡可以增强抗肿瘤免疫反应,是一种有前途的癌症治疗策略。然而,过度的焦亡可能引发炎症性疾病的发展,由于过度和持续的炎症反应。纳米材料和纳米生物技术,以其独特的优势和多样化的结构而闻名,由于它们在癌症等疾病中可能诱发焦亡,因此引起了越来越多的关注。用于在癌细胞中药物诱导的焦亡的纳米递送系统可以克服小分子的限制。此外,纳米药物可以直接诱导和操纵焦亡。这篇综述总结并讨论了在炎症性疾病和癌症中,基于纳米粒子的焦亡治疗的最新进展,专注于它们的功能和机制,并为选择用于焦亡的纳米药物提供有价值的见解。然而,由于对纳米生物学相互作用的理解有限,这些策略的临床应用仍面临挑战.最后,介绍了热解纳米材料新兴领域的未来前景。
    Pyroptosis, a lytic form of cell death mediated by the gasdermin family, is characterized by cell swelling and membrane rupture. Inducing pyroptosis in cancer cells can enhance antitumor immune responses and is a promising strategy for cancer therapy. However, excessive pyroptosis may trigger the development of inflammatory diseases due to immoderate and continuous inflammatory reactions. Nanomaterials and nanobiotechnology, renowned for their unique advantages and diverse structures, have garnered increasing attention owing to their potential to induce pyroptosis in diseases such as cancer. A nano-delivery system for drug-induced pyroptosis in cancer cells can overcome the limitations of small molecules. Furthermore, nanomedicines can directly induce and manipulate pyroptosis. This review summarizes and discusses the latest advancements in nanoparticle-based treatments with pyroptosis among inflammatory diseases and cancer, focusing on their functions and mechanisms and providing valuable insights into selecting nanodrugs for pyroptosis. However, the clinical application of these strategies still faces challenges owing to a limited understanding of nanobiological interactions. Finally, future perspectives on the emerging field of pyroptotic nanomaterials are presented.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    焦亡是一种不同于凋亡的程序性细胞死亡,铁性凋亡,或坏死。许多研究报道,它在多种肿瘤的肿瘤发生和肿瘤微环境的修饰中起着至关重要的作用。在这次审查中,我们简要描述了规范,非规范,和焦化细胞死亡的替代机制。我们还总结了焦亡在肿瘤发生中的潜在作用,肿瘤发展,和肺癌治疗,包括化疗,放射治疗,靶向治疗,和免疫疗法。发热对肿瘤环境的调节和肺癌治疗具有双重影响。进一步探索基于焦亡的药物可以为肺癌提供新的治疗策略。
    Pyroptosis is a type of programed cell death that differs from apoptosis, ferroptosis, or necrosis. Numerous studies have reported that it plays a critical role in tumorigenesis and modification of the tumor microenvironment in multiple tumors. In this review, we briefly describe the canonical, non-canonical, and alternative mechanisms of pyroptotic cell death. We also summarize the potential roles of pyroptosis in oncogenesis, tumor development, and lung cancer treatment, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Pyroptosis has double-edged effects on the modulation of the tumor environment and lung cancer treatment. Further exploration of pyroptosis-based drugs could provide novel therapeutic strategies for lung cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    先天免疫是人体抵御疾病的第一道防线,调节的细胞死亡是平衡病原体清除和炎症反应的核心组成部分。细胞死亡途径通常分为非裂解和裂解。虽然非裂解性细胞凋亡已在健康和疾病中得到广泛研究,裂解性细胞死亡途径越来越多地涉及感染性和炎症性疾病和癌症。星孢菌素(STS)是众所周知的非裂解性细胞凋亡的诱导剂。然而,在这项研究中,我们观察到STS也在较晚的时间点诱导裂解细胞死亡。使用带有基因敲除的生化评估,药理学抑制剂,和基因沉默,我们确定STS通过caspase-8/RIPK3轴触发了PANoptosis,由RIPK1介导。全景是一种独特的,Lytic,先天性免疫细胞死亡途径由先天性免疫传感器启动,并通过PANoptosome复合物由半胱天冬酶和RIPK驱动。缺失PANoposome复合物的核心成分caspase-8和RIPK3,防止STS诱导的裂解细胞死亡。总的来说,我们的研究将STS确定为溶解性炎性细胞死亡的时间依赖性诱导剂,全景。这些发现强调了理解不同细胞死亡途径的触发和时间特异性激活的重要性,以促进我们对先天免疫和细胞死亡的分子机制的理解,以用于临床翻译。
    Innate immunity is the body\'s first line of defense against disease, and regulated cell death is a central component of this response that balances pathogen clearance and inflammation. Cell death pathways are generally categorized as non-lytic and lytic. While non-lytic apoptosis has been extensively studied in health and disease, lytic cell death pathways are increasingly implicated in infectious and inflammatory diseases and cancers. Staurosporine (STS) is a well-known inducer of non-lytic apoptosis. However, in this study, we observed that STS also induces lytic cell death at later timepoints. Using biochemical assessments with genetic knockouts, pharmacological inhibitors, and gene silencing, we identified that STS triggered PANoptosis via the caspase-8/RIPK3 axis, which was mediated by RIPK1. PANoptosis is a unique, lytic, innate immune cell death pathway initiated by innate immune sensors and driven by caspases and RIPKs through PANoptosome complexes. Deletion of caspase-8 and RIPK3, core components of the PANoptosome complex, protected against STS-induced lytic cell death. Overall, our study identifies STS as a time-dependent inducer of lytic inflammatory cell death, PANoptosis. These findings emphasize the importance of understanding trigger- and time-specific activation of distinct cell death pathways to advance our understanding of the molecular mechanisms of innate immunity and cell death for clinical translation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    先天免疫系统是宿主防御的第一道防线。先天性免疫激活利用模式识别受体来检测病原体,病原体相关和损伤相关分子模式(PAMPs和DAMPs),和稳态改变,并驱动炎症信号通路和调节细胞死亡。细胞死亡激活对于消除病原体和异常或受损细胞至关重要。而过度激活可能与炎症有关,组织损伤,和疾病。因此,人们对研究细胞死亡机制以了解潜在的生物学和确定治疗策略越来越感兴趣.然而,存在重大的技术挑战,因为许多细胞死亡途径彼此共享关键分子,这些细胞死亡分子被删除的遗传模型仍然是评估的黄金标准。此外,已经确定了细胞死亡途径之间的广泛串扰,凋亡,坏死,以及最近出现的PANoptosis,它被定义为突出的,独特的先天免疫,Lytic,和由先天免疫传感器启动并通过PANopossomes由半胱天冬酶和RIPK驱动的炎性细胞死亡途径。PANopotsomes是由先天性免疫传感器(S)响应病原体组装的多蛋白复合物,PAMPs,DAMPs,细胞因子,和导致全景下垂的稳态变化。在这篇文章中,我们提供了分子定义不同细胞死亡途径的方法,包括全景,通过蛋白质印迹使用遗传和化学方法,LDH测定,和显微镜读数。该程序允许在细胞群体和单细胞水平上评估细胞死亡,即使没有获得遗传模型。拥有所有实验室更易于访问的全面工作流程将提高我们作为科学界加速发现的能力。使用这些协议将有助于识别驱动PANoptosis的新的先天免疫传感器,并定义分子机制和调节因子,以建立临床翻译的新目标。©2024作者(S)。WileyPeriodicalsLLC出版的当前协议。基本方案1:使用活细胞成像诱导和定量细胞死亡备选方案1:使用LDH定量细胞死亡备选方案2:使用免疫荧光染色评估单细胞中的细胞死亡复合物基本方案2:通过免疫印迹分析细胞死亡机制(蛋白质印迹)。
    The innate immune system is the first line of host defense. Innate immune activation utilizes pattern recognition receptors to detect pathogens, pathogen-associated and damage-associated molecular patterns (PAMPs and DAMPs), and homeostatic alterations and drives inflammatory signaling pathways and regulated cell death. Cell death activation is critical to eliminate pathogens and aberrant or damaged cells, while excess activation can be linked to inflammation, tissue damage, and disease. Therefore, there is increasing interest in studying cell death mechanisms to understand the underlying biology and identify therapeutic strategies. However, there are significant technical challenges, as many cell death pathways share key molecules with each other, and genetic models where these cell death molecules are deleted remain the gold standard for evaluation. Furthermore, extensive crosstalk has been identified between the cell death pathways pyroptosis, apoptosis, necroptosis, and the more recently characterized PANoptosis, which is defined as a prominent, unique innate immune, lytic, and inflammatory cell death pathway initiated by innate immune sensors and driven by caspases and RIPKs through PANoptosomes. PANoptosomes are multi-protein complexes assembled by innate immune sensor(s) in response to pathogens, PAMPs, DAMPs, cytokines, and homeostatic changes that drive PANoptosis. In this article, we provide methods for molecularly defining distinct cell death pathways, including PANoptosis, using both genetic and chemical approaches through western blot, LDH assay, and microscopy readouts. This procedure allows for the assessment of cell death on the cell population and single-cell levels even without access to genetic models. Having this comprehensive workflow that is more accessible to all labs will improve our ability as a scientific community to accelerate discovery. Using these protocols will help identify new innate immune sensors that drive PANoptosis and define the molecular mechanisms and regulators involved to establish new targets for clinical translation. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Induction and quantification of cell death using live cell imaging Alternate Protocol 1: Quantification of cell death using LDH Alternate Protocol 2: Assessment of cell death complexes in single cells using immunofluorescence staining Basic Protocol 2: Analysis of cell death mechanisms by immunoblots (western blots).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    焦亡-程序性细胞死亡的一种形式-与肿瘤免疫之间的相互作用代表了一个新兴的感兴趣领域。焦亡在癌症中表现出双重作用:它既可以促进肿瘤发展,又可以通过激活抑制肿瘤逃避和鼓励细胞死亡的免疫反应来抵消肿瘤发展。当前的肿瘤免疫治疗策略,特别是CAR-T细胞疗法和免疫检查点抑制剂(ICIs),除了某些中药化合物的潜力,强调焦亡和癌症免疫之间的复杂关系。随着研究深入研究肿瘤治疗中的焦亡机制,它在增强肿瘤免疫反应中的应用成为一种新的研究途径。
    这篇综述旨在阐明焦亡的潜在机制,它对肿瘤生物学的影响,以及肿瘤免疫治疗研究的进展。
    在PubMed进行了全面的文献综述,Embase,CNKI,和万方数据库从研究开始到2023年8月22日。搜索采用了诸如“焦度”之类的关键字,\"癌症\",\"肿瘤\",\"机制\",\"豁免权\",\"gasdermin\",\"ICB\",\"CAR-T\",\"PD-1\",\"PD-L1\",“草药”,“植物药”,\"中药\",“中药”,“免疫疗法”,通过AND/OR链接,获取焦亡和肿瘤免疫治疗的最新发现。
    焦度受复杂机制支配,Gasdermin家族扮演了举足轻重的角色.虽然有望用于肿瘤免疫治疗应用,关于焦亡对肿瘤免疫影响的研究仍在不断发展。值得注意的是,某些中药成分已被确定为潜在的焦亡诱导剂,值得进一步探索。
    这篇综述巩固了目前关于焦亡在肿瘤免疫治疗中的作用的知识。它揭示了焦亡是免疫治疗领域的一个有益因素,这表明利用焦亡来开发新的癌症治疗策略,包括中医,代表肿瘤学的前瞻性方法。
    UNASSIGNED: The interaction between pyroptosis-a form of programmed cell death-and tumor immunity represents a burgeoning field of interest. Pyroptosis exhibits a dual role in cancer: it can both promote tumor development and counteract it by activating immune responses that inhibit tumor evasion and encourage cell death. Current tumor immunotherapy strategies, notably CAR-T cell therapy and immune checkpoint inhibitors (ICIs), alongside the potential of certain traditional Chinese medicinal compounds, highlight the intricate relationship between pyroptosis and cancer immunity. As research delves deeper into pyroptosis mechanisms within tumor therapy, its application in enhancing tumor immune responses emerges as a novel research avenue.
    UNASSIGNED: This review aims to elucidate the mechanisms underlying pyroptosis, its impact on tumor biology, and the advancements in tumor immunotherapy research.
    UNASSIGNED: A comprehensive literature review was conducted across PubMed, Embase, CNKI, and Wanfang Database from the inception of the study until August 22, 2023. The search employed keywords such as \"pyroptosis\", \"cancer\", \"tumor\", \"mechanism\", \"immunity\", \"gasdermin\", \"ICB\", \"CAR-T\", \"PD-1\", \"PD-L1\", \"herbal medicine\", \"botanical medicine\", \"Chinese medicine\", \"traditional Chinese medicine\", \"immunotherapy\", linked by AND/OR, to capture the latest findings in pyroptosis and tumor immunotherapy.
    UNASSIGNED: Pyroptosis is governed by a complex mechanism, with the Gasdermin family playing a pivotal role. While promising for tumor immunotherapy application, research into pyroptosis\'s effect on tumor immunity is still evolving. Notably, certain traditional Chinese medicine ingredients have been identified as potential pyroptosis inducers, meriting further exploration.
    UNASSIGNED: This review consolidates current knowledge on pyroptosis\'s role in tumor immunotherapy. It reveals pyroptosis as a beneficial factor in the immunotherapeutic landscape, suggesting that leveraging pyroptosis for developing novel cancer treatment strategies, including those involving traditional Chinese medicine, represents a forward-looking approach in oncology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    甾醇调节元件结合蛋白(SREBP)是控制脂质代谢的保守转录因子家族。当细胞胆固醇水平低时,SREBP2从内质网转运到高尔基体,在那里它经历蛋白水解活化以产生可溶性N末端片段,驱动脂质生物合成基因的表达。SREBP的功能异常激活与各种代谢异常有关。在这项研究中,我们发现,活性核形式SREBP2(nSREBP2)的过表达会导致各种类型细胞中caspase依赖性裂解细胞死亡。这些细胞表现出典型的变性和坏死特征,包括质膜膨胀和细胞内容物的释放。然而,该表型独立于gasdermin家族蛋白或混合谱系激酶结构域样(MLKL)。转录组分析鉴定nSREBP2诱导p73的表达,其进一步激活胱天蛋白酶。通过全基因组CRISPR-Cas9筛选,我们发现Pannexin-1(PANX1)作用于caspase下游促进膜破裂。半胱天冬酶-3或7在C末端尾部切割PANX1并增加渗透性。PANX1的孔形成活性的抑制减轻了裂解性细胞死亡。在TNF诱导的或化学治疗剂(阿霉素或顺铂)诱导的细胞死亡期间,PANX1可以介导不依赖汽油和MLKL的细胞裂解。一起,这项研究揭示了SREBPs作为程序性细胞死亡的增强剂的非规范功能,并表明PANX1可以直接促进裂解细胞死亡,而与gasdermins和MLKL无关。
    Sterol-regulatory element binding proteins (SREBPs) are a conserved transcription factor family governing lipid metabolism. When cellular cholesterol level is low, SREBP2 is transported from the endoplasmic reticulum to the Golgi apparatus where it undergoes proteolytic activation to generate a soluble N-terminal fragment, which drives the expression of lipid biosynthetic genes. Malfunctional SREBP activation is associated with various metabolic abnormalities. In this study, we find that overexpression of the active nuclear form SREBP2 (nSREBP2) causes caspase-dependent lytic cell death in various types of cells. These cells display typical pyroptotic and necrotic signatures, including plasma membrane ballooning and release of cellular contents. However, this phenotype is independent of the gasdermin family proteins or mixed lineage kinase domain-like (MLKL). Transcriptomic analysis identifies that nSREBP2 induces expression of p73, which further activates caspases. Through whole-genome CRISPR-Cas9 screening, we find that Pannexin-1 (PANX1) acts downstream of caspases to promote membrane rupture. Caspase-3 or 7 cleaves PANX1 at the C-terminal tail and increases permeability. Inhibition of the pore-forming activity of PANX1 alleviates lytic cell death. PANX1 can mediate gasdermins and MLKL-independent cell lysis during TNF-induced or chemotherapeutic reagents (doxorubicin or cisplatin)-induced cell death. Together, this study uncovers a noncanonical function of SREBPs as a potentiator of programmed cell death and suggests that PANX1 can directly promote lytic cell death independent of gasdermins and MLKL.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    干扰素(IFN)信号升高与肾脏疾病相关,包括COVID-19,HIV,和载脂蛋白-L1(APOL1)肾病,但IFN是否直接导致肾毒性尚不清楚.使用人类肾脏类器官,原代内皮细胞,和病人样本,我们证明了IFN-γ与APOL1表达结合可诱导变性血管病变。单细胞RNA测序,免疫印迹,和基于荧光的定量测定表明,IFN-γ介导的APOL1表达伴随着类器官中的热解内皮细胞网络降解。IFN-γ信号传导的药理学阻断抑制APOL1表达,防止焦亡相关基因的上调,并拯救血管网络。COVID-19,蛋白尿肾病,和萎缩性肾小球病同样表明IFN信号和焦亡相关基因表达增加与肾脏疾病进展加速相关。我们的结果表明,IFN-γ信号同时诱导内皮损伤和启动肾细胞的焦亡,提示APOL1介导的塌陷性肾小球病的组合机制,可以有针对性的治疗。
    Elevated interferon (IFN) signaling is associated with kidney diseases including COVID-19, HIV, and apolipoprotein-L1 (APOL1) nephropathy, but whether IFNs directly contribute to nephrotoxicity remains unclear. Using human kidney organoids, primary endothelial cells, and patient samples, we demonstrate that IFN-γ induces pyroptotic angiopathy in combination with APOL1 expression. Single-cell RNA sequencing, immunoblotting, and quantitative fluorescence-based assays reveal that IFN-γ-mediated expression of APOL1 is accompanied by pyroptotic endothelial network degradation in organoids. Pharmacological blockade of IFN-γ signaling inhibits APOL1 expression, prevents upregulation of pyroptosis-associated genes, and rescues vascular networks. Multiomic analyses in patients with COVID-19, proteinuric kidney disease, and collapsing glomerulopathy similarly demonstrate increased IFN signaling and pyroptosis-associated gene expression correlating with accelerated renal disease progression. Our results reveal that IFN-γ signaling simultaneously induces endothelial injury and primes renal cells for pyroptosis, suggesting a combinatorial mechanism for APOL1-mediated collapsing glomerulopathy, which can be targeted therapeutically.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Caspase-5是一种蛋白酶,可诱导对脂多糖(LPS)的炎症反应,革兰氏阴性细菌的细胞包膜成分。CASP5基因的表达水平在基础状态下很低,但在LPS的存在下强烈增加。细胞内LPS与caspase-5的caspase激活和募集结构域(CARD)结合,导致形成非规范炎性体。随后,caspase-5的催化结构域裂解gasderminD,从而促进细胞膜孔的形成,通过该细胞膜孔释放白介素-1家族的促炎细胞因子。Caspase-4在与LPS结合时也能够形成非规范的炎症小体,但其表达对LPS的依赖性低于caspase-5的表达。半胱天冬酶-4和半胱天冬酶-5是通过灵长类动物亚分化中单个祖先基因的复制而进化而来的,包括人类。值得注意的是,主要的生物医学模型物种,老鼠,只有一个直向序列,即caspase-11。这里,我们综述了对caspase-5的促炎作用重要的结构特征和调控机制.我们总结了哺乳动物中促炎caspase的种间差异和进化,并讨论了caspase-5在防御革兰氏阴性菌和败血症中的潜在作用。
    Caspase-5 is a protease that induces inflammation in response to lipopolysaccharide (LPS), a component of the cell envelope of Gram-negative bacteria. The expression level of the CASP5 gene is very low in the basal state, but strongly increases in the presence of LPS. Intracellular LPS binds to the caspase activation and recruitment domain (CARD) of caspase-5, leading to the formation of a non-canonical inflammasome. Subsequently, the catalytic domain of caspase-5 cleaves gasdermin D and thereby facilitates the formation of cell membrane pores through which pro-inflammatory cytokines of the interleukin-1 family are released. Caspase-4 is also able to form a non-canonical inflammasome upon binding to LPS, but its expression is less dependent on LPS than the expression of caspase-5. Caspase-4 and caspase-5 have evolved via the duplication of a single ancestral gene in a subclade of primates, including humans. Notably, the main biomedical model species, the mouse, has only one ortholog, namely caspase-11. Here, we review the structural features and the mechanisms of regulation that are important for the pro-inflammatory roles of caspase-5. We summarize the interspecies differences and the evolution of pro-inflammatory caspases in mammals and discuss the potential roles of caspase-5 in the defense against Gram-negative bacteria and in sepsis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号