food shelf-life

  • 文章类型: Journal Article
    在追求增强食品包装,纳米技术,特别是绿色银纳米颗粒(G-AgNPs),因其卓越的抗菌性能和延长食品保质期的高潜力而备受关注。我们的研究旨在开发用G-AgNPs增强的玉米淀粉基涂层材料。使用单轴拉伸试验机检查机械性能,揭示了用最高的G-AgNPs浓度(12.75ppm)涂覆的淀粉表现出87.6MPa的UTS,与48.48MPa的对照纸相比,显著(p<0.02)增加65%。WVP的评估显示,在掺入疏水层的情况下,渗透率的统计学降低高达8%。此外,根据ISO22196:2011对抗菌性能进行了评估,证明了G-AgNPs对大肠杆菌的强和浓度依赖性活性.所有样品在两种模拟环境(土壤和海水)中都成功分解,包括呈现G-AgNPs的样品。在食品试验分析中,淀粉和G-AgNPs的存在显着减少了6天后的体重减轻,樱桃番茄减少8.59%,绿葡萄减少6.77%。这项研究的结果有助于环保包装材料的进步,与联合国减少食物浪费和促进可持续性的可持续发展目标保持一致。
    In the pursuit of enhancing food packaging, nanotechnology, particularly green silver nanoparticles (G-AgNPs), have gained prominence for its remarkable antimicrobial properties with high potential for food shelf-life extension. Our study aims to develop corn starch-based coating materials reinforced with G-AgNPs. The mechanical properties were examined using a uniaxial tensile tester, revealing that starch coated with the highest G-AgNPs concentration (12.75 ppm) exhibited UTS of 87.6 MPa compared to 48.48 MPa of control paper, a significant (p < 0.02) 65% increase. The assessment of the WVP showcased a statistical reduction in permeability by up to 8% with the incorporation of the hydrophobic layer. Furthermore, antibacterial properties were assessed following ISO 22196:2011, demonstrating a strong and concentration-dependent activity of G-AgNPs against E. coli. All samples successfully disintegrated in both simulated environments (soil and seawater), including samples presenting G-AgNPs. In the food trial analysis, the presence of starch and G-AgNPs significantly reduced weight loss after 6 days, with cherry tomatoes decreasing by 8.59% and green grapes by 6.77% only. The results of this study contribute to the advancement of environmentally friendly packaging materials, aligning with the UN sustainable development goals of reducing food waste and promoting sustainability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    抗菌肽(AMPs)是各种生物体先天免疫系统的组成部分。它们可以通过破坏微生物膜或不影响膜稳定性而起作用。对这些小肽的兴趣源于对抗生素的恐惧和对抗生素具有抗性的微生物的出现。通过膜或代谢破坏,它们保护生物体免受细菌入侵,病毒,原生动物,和真菌。高疗效和特异性,低药物相互作用和毒性,热稳定性,在水中的溶解度,生物多样性表明它们在食品中的应用,医学,农业,畜牧业,和水产养殖。纳米载体可以用来保护,交付,并提高其生物利用度的有效性。高生产成本可能会限制其使用。这篇综述总结了自然来源,结构,行动模式,以及微生物肽在食品和制药工业中的应用。还考虑了对AMP大规模生产的任何限制。
    Antimicrobial peptides (AMPs) are constituents of the innate immune system in every kind of living organism. They can act by disrupting the microbial membrane or without affecting membrane stability. Interest in these small peptides stems from the fear of antibiotics and the emergence of microorganisms resistant to antibiotics. Through membrane or metabolic disruption, they defend an organism against invading bacteria, viruses, protozoa, and fungi. High efficacy and specificity, low drug interaction and toxicity, thermostability, solubility in water, and biological diversity suggest their applications in food, medicine, agriculture, animal husbandry, and aquaculture. Nanocarriers can be used to protect, deliver, and improve their bioavailability effectiveness. High cost of production could limit their use. This review summarizes the natural sources, structures, modes of action, and applications of microbial peptides in the food and pharmaceutical industries. Any restrictions on AMPs\' large-scale production are also taken into consideration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The consumption of minimally processed fresh vegetables has increased by the consumer\'s demand of natural products without synthetic preservatives and colorants. These new consumption behaviors have prompted research on the combination of emulsion techniques and coatings that have traditionally been used by the food industries. This combination brings great potential for improving the quality of fresh-cut fruits and vegetables by allowing the incorporation of natural and multifunctional additives directly into food formulations. These antioxidant, antibacterial, and/or antifungal additives are usually encapsulated at the nano- or micro-scale for their stabilization and protection to make them available by food through the coating. These nano- or micro-emulsions are responsible for the release of the active agents to bring them into direct contact with food to protect it from possible organoleptic degradation. Keeping in mind the widespread applications of micro and nanoemulsions for preserving the quality and safety of fresh vegetables, this review reports the latest works based on emulsion techniques and polysaccharide-based coatings as carriers of active compounds. The technical challenges of micro and nanoemulsion techniques, the potential benefits and drawbacks of their use, the development of polysaccharide-based coatings with natural active additives are considered, since these systems can be used as alternatives to conventional coatings in food formulations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Intelligent food packaging is emerging as a novel technology, capable of monitoring the quality and safety of food during its shelf-life time. This technology makes use of indicators and sensors that are applied in the packaging and that detect changes in physiological variations of the foodstuffs (due to microbial and chemical degradation). These indicators usually provide information, e.g., on the degree of freshness of the product packed, through a color change, which is easily identified, either by the food distributor and the consumer. However, most of the indicators that are currently used are non-renewable and non-biodegradable synthetic materials. Because there is an imperative need to improve food packaging sustainability, choice of sensors should also reflect this requirement. Therefore, this work aims to revise the latest information on bio-based sensors, based on compounds obtained from natural extracts, that can, in association with biopolymers, act as intelligent or smart food packaging. Its application into several perishable foods is summarized. It is clear that bioactive extracts, e.g., anthocyanins, obtained from a variety of sources, including by-products of the food industry, present a substantial potential to act as bio-sensors. Yet, there are still some limitations that need to be surpassed before this technology reaches a mature commercial stage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    This work aimed to evaluate the potential of chitosan/cellulose nanocrystals (CNC) films to be used as active pads for meat packages to prolong its shelf-life and preserve its properties over time. Several CNC concentrations (5, 10, 25, and 50 wt%) were tested and the films were produced by solvent casting. The developed samples were characterized by ATR-FTIR, TGA, FESEM, and XRD. The transparency, antimicrobial, barrier and mechanical properties were also assessed. Finally, the films\' ability to prolong food shelf-life was studied in real conditions using chicken meat. CNC incorporation improved the thermal stability and the oxygen barrier while the water vapor permeability was maintained. An enhancement of mechanical properties was also observed by the increase in tensile strength and Young\'s modulus in chitosan/CNC films. These films demonstrated bactericidal effect against Gram-positive and Gram-negative bacteria and fungicidal activity against Candida albicans. Lastly, chitosan-based films decreased the growth of Pseudomonas and Enterobacteriaceae bacteria in meat during the first days of storage compared to commercial membranes, while chitosan/CNC films reduced the total volatile basic nitrogen (TVB-N), indicating their efficiency in retarding meat\'s spoilage under refrigeration conditions. This work highlights the great potential of natural-based films to act as green alternatives for food preservation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    This review was focused on describing the combination of electrospinning and cyclodextrin inclusion complexes as one of the newest alternatives for the development of food packaging materials with antimicrobial and/or antioxidant properties. The advantages of this technological combination, the routes to design the active materials, the characterization and application of such materials were reviewed. Electrospinning has allowed developing active packaging materials composed by fibrillary structures with a high ratio surface-to-volume. On the other hand, cyclodextrin inclusion complexes have maintained the properties of active compounds when they have been incorporated in packaging materials. Both methods have been recently combined and novel active food packaging materials have been obtained through three different routes. Polymeric solutions containing preformed (route 1) or in-situ formed (route 2) cyclodextrin inclusion complexes have been electrospun to obtain packaging materials. Furthermore, cyclodextrin inclusion complexes solutions have been directly electrospun (route 3) in order to produce those materials. The developed packaging materials have exhibited a high active compound loading with a long lasting release. Therefore, the protection of different foodstuff against microbial growth, oxidation and quality decay as well as the maintenance of their physical and sensory properties have been achieved when those materials were applied as active packaging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Food packaging is not only a simple protective barrier, but a real \"active\" component, which is expected to preserve food quality, safety and shelf-life. Therefore, the materials used for packaging production should show peculiar features and properties. Specifically, antimicrobial packaging has recently gained great attention with respect to both social and economic impacts. In this paper, the results obtained by using a polymer material functionalized by a small synthetic peptide as \"active\" packaging are reported. The surface of Polyethylene Terephthalate (PET), one of the most commonly used plastic materials in food packaging, was plasma-activated and covalently bio-conjugated to a bactenecin-derivative peptide named 1018K6, previously characterized in terms of antimicrobial and antibiofilm activities. The immobilization of the peptide occurred at a high yield and no release was observed under different environmental conditions. Moreover, preliminary data clearly demonstrated that the \"active\" packaging was able to significantly reduce the total bacterial count together with yeast and mold spoilage in food-dairy products. Finally, the functionalized-PET polymer showed stronger efficiency in inhibiting biofilm growth, using a Listeria monocytogenes strain isolated from food products. The use of these \"active\" materials would greatly decrease the risk of pathogen development and increase the shelf-life in the food industry, showing a real potential against a panel of microorganisms upon exposure to fresh and stored products, high chemical stability and re-use possibility.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Minimally processed fruits and vegetables are one of the major growing sectors in food industry. This growing demand for healthy and convenient foods with fresh-like properties is accompanied by concerns surrounding efficacy of the available sanitizing methods to appropriately deal with food-borne diseases. In fact, chemical sanitizers do not provide an efficient microbial reduction, besides being perceived negatively by the consumers, dangerous for human health, and harmful to the environment, and the conventional thermal treatments may negatively affect physical, nutritional, or bioactive properties of these perishable foods. For these reasons, the industry is investigating alternative nonthermal physical technologies, namely innovative packaging systems, ionizing and ultraviolet radiation, pulsed light, high-power ultrasound, cold plasma, high hydrostatic pressure, and dense phase carbon dioxide, as well as possible combinations between them or with other preservation factors (hurdles). This review discusses the potential of these novel or emerging technologies for decontamination and shelf-life extension of fresh and minimally processed fruits and vegetables. Advantages, limitations, and challenges related to its use in this sector are also highlighted.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号