female heterogamety

  • 文章类型: Journal Article
    转录组数据已用于研究大约10个鳞翅目ZW物种的性染色体剂量补偿(SCDC),产生Z≈ZZ Transcriptomic data have been used to study sex chromosome dosage compensation (SCDC) in approximately 10 Lepidoptera ZW species, yielding a consensus compensation pattern of Z ≈ ZZ < AA . $$ \\approx \\mathrm{ZZ}<\\mathrm{AA}. $$ It remains unclear whether this compensation pattern holds when examining more Lepidoptera ZW species and/or using proteomic data to analyse SCDC. Here we combined transcriptomic and proteomic data as well as transcriptional level of six individual Z genes to reveal the SCDC pattern in Helicoverpa armigera, a polyphagous lepidopteran pest of economic importance. Transcriptomic analysis showed that the Z chromosome expression of H. armigera was balanced between male and female but substantially reduced relative to autosome expression, exhibiting an SCDC pattern of Z ≈ ZZ < AA $$ \\approx \\mathrm{ZZ}<\\mathrm{AA} $$ . When using H. amigera midgut proteomic data, the SCDC pattern of this species changed from Z ≈ ZZ < AA $$ \\approx \\mathrm{ZZ}<\\mathrm{AA} $$ at transcriptomic level to Z = ZZ = AA at the proteomic level. RT-qPCR analysis of transcript abundance of six Z genes found that compensation for each Z gene could vary from no compensation to overcompensation, depending on the individual genes and tissues tested. These results demonstrate for the first time the existence of a translational compensation mechanism, which is operating in addition to a translational mechanism, such as has been reported in other lepidopteran species. And the transcriptional compensation mechanism functions to accomplish Z chromosome dosage balance between the sexes (M = F on the Z chromosome), whereas the translation compensation mechanism operates to achieve dosage compensation between Z chromosome and autosome (Z = AA).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    欧亚盐水虾(卤虫属)与孤雌生殖雌性的性和无性谱系密切相关,在低频产生罕见的雄性。尽管已知它们具有ZW染色体,这些都不是很好的特征,目前还不清楚它们是否在整个进化枝之间共享。此外,无性性行为传播的潜在遗传结构,当罕见的雄性与密切相关的性雌性交配时,就会发生这种情况,不是很了解。我们为性欧亚物种卤虫sinica产生了染色体水平的装配,并详细表征了该物种的性染色体对。我们将这种新的组装与性物种Artemiasp的短读基因组数据相结合。哈萨克斯坦和几个无性繁殖的卤虫谱系,使我们能够对整个属的性染色体进化进行深入的表征。我们确定了ZW对的一个小的分化区域,该区域由所有性和无性血统共享,支持性染色体的共同祖先.我们还推断,在美国和欧亚谱系中,重组抑制已独立地传播到染色体的较大部分。最后,我们利用了一个罕见的雄性,我们和性女性回交,探索无性性行为的遗传基础。我们的结果表明,孤雌生殖可能部分由Z染色体上的一个基因座控制,强调性别决定和无性之间的相互作用。
    Eurasian brine shrimp (genus Artemia) have closely related sexual and asexual lineages of parthenogenetic females, which produce rare males at low frequencies. Although they are known to have ZW chromosomes, these are not well characterized, and it is unclear whether they are shared across the clade. Furthermore, the underlying genetic architecture of the transmission of asexuality, which can occur when rare males mate with closely related sexual females, is not well understood. We produced a chromosome-level assembly for the sexual Eurasian species Artemia sinica and characterized in detail the pair of sex chromosomes of this species. We combined this new assembly with short-read genomic data for the sexual species Artemia sp. Kazakhstan and several asexual lineages of Artemia parthenogenetica, allowing us to perform an in-depth characterization of sex-chromosome evolution across the genus. We identified a small differentiated region of the ZW pair that is shared by all sexual and asexual lineages, supporting the shared ancestry of the sex chromosomes. We also inferred that recombination suppression has spread to larger sections of the chromosome independently in the American and Eurasian lineages. Finally, we took advantage of a rare male, which we backcrossed to sexual females, to explore the genetic basis of asexuality. Our results suggest that parthenogenesis is likely partly controlled by a locus on the Z chromosome, highlighting the interplay between sex determination and asexuality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    BACKGROUND: Sex chromosomes are in some species largely undifferentiated (homomorphic) with restricted sex determination regions. Homomorphic but different sex chromosomes are found in the closely related genera Populus and Salix indicating flexible sex determination systems, ideal for studies of processes involved in sex chromosome evolution. We have performed genome-wide association studies of sex and analysed sex chromosomes in a population of 265 wild collected Salix viminalis accessions and studied the sex determining locus.
    RESULTS: A total of 19,592 markers were used in association analyses using both Fisher\'s exact tests and a single-marker mixed linear model, which resulted in 48 and 41 sex-associated (SA) markers respectively. Across all 48 SA markers, females were much more often heterozygous than males, which is expected if females were the heterogametic sex. The majority of the SA markers were, based on positions in the S. purpurea genome, located on chromosome 15, previously demonstrated to be the sex chromosome. Interestingly, when mapping the genotyping-by-sequencing sequence tag harbouring the two SA markers with the highest significance to the S. viminalis genomic scaffolds, five regions of very high similarity were found: three on a scaffold that represents a part of chromosome 15, one on a scaffold that represents a part of chromosome 9 and one on a scaffold not anchored to the genome. Based on segregation differences of the alleles at the two marker positions and on differences in PCR amplification between females and males we conclude that females had multiple copies of this DNA fragment (chromosome 9 and 15), whereas males only had one (chromosome 9). We therefore postulate that the female specific sequences have been copied from chromosome 9 and inserted on chromosome 15, subsequently developing into a hemizygous W chromosome linked region.
    CONCLUSIONS: Our results support that sex determination in S. viminalis is controlled by one locus on chromosome 15. The segregation patterns observed at the SA markers furthermore confirm that S. viminalis females are the heterogametic sex. We also identified a translocation from chromosome 9 to the W chromosome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Sex determination (SD) is an essential and ancient developmental process, but the genetic systems that regulate this process are surprisingly variable. Why SD mechanisms vary so much is a longstanding question in evolutionary biology. SD genes are generally located on sex chromosomes which also carry genes that interact epistatically with autosomes to affect fitness. How this affects the evolutionary stability of SD mechanisms is still unknown. Here, we explore how epistatic interactions between a sexually antagonistic (SA) non-SD gene, located on either an ancestral or novel sex chromosome, and an autosomal gene affect the conditions under which an evolutionary transition to a new SD system occurs. We find that when the SD gene is linked to an ancestral sex-chromosomal gene which engages in epistatic interactions, epistasis enhances the stability of the sex chromosomes so that they are retained under conditions where transitions would otherwise occur. This occurs both when weaker fitness effects are associated with the ancestral sex chromosome pair or stronger fitness effects associated with a newly evolved SD gene. However, the probability that novel SD genes spread is unaffected if they arise near genes involved in epistasis. This discrepancy occurs because, on autosomes, SA allele frequencies are typically lower than on sex chromosomes. In our model, increased frequencies of these alleles contribute to a higher frequency of epistasis which may therefore more readily occur on sex chromosomes. Because sex chromosome-autosome interactions are abundant and can take several forms, they may play a large role in maintaining sex chromosomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    In species with genetic sex determination, dosage compensation can evolve to equal expression levels of sex-linked and autosomal genes. Current knowledge about dosage compensation has mainly been derived from male-heterogametic (XX/XY) model organisms, whereas less is understood about the process in female-heterogametic systems (ZZ/ZW). In moths and butterflies, downregulation of Z-linked expression in males (ZZ) to match the expression level in females (ZW) is often observed. However, little is known about the underlying regulatory mechanisms, or if dosage compensation patterns vary across ontogenetic stages. In this study, we assessed dynamics of Z-linked and autosomal expression levels across developmental stages in the wood white (Leptidea sinapis). We found that although expression of Z-linked genes in general was reduced compared with autosomal genes, dosage compensation was actually complete for some categories of genes, in particular sex-biased genes, but equalization in females was constrained to a narrower gene set. We also observed a noticeable convergence in Z-linked expression between males and females after correcting for sex-biased genes. Sex-biased expression increased successively across developmental stages, and male-biased genes were enriched on the Z-chromosome. Finally, all five core genes associated with the ribonucleoprotein dosage compensation complex male-specific lethal were detected in adult females, in correspondence with a reduction in the expression difference between autosomes and the single Z-chromosome. We show that tuning of gene dosage is multilayered in Lepidoptera and argue that expression balance across chromosomal classes may predominantly be driven by enrichment of male-biased genes on the Z-chromosome and cooption of available dosage regulators.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    分化的性染色体伴随着X/Z特异性基因和常染色体基因之间的基因剂量差异。在转录组水平,这些与性别相关的基因会导致表达失衡,或基因剂量可以通过表观遗传机制补偿,并导致表达水平均衡。曼氏血吸虫先前已被描述为ZW物种(即,女性异性恋,与XY雄性异育物种相反),具有部分剂量补偿,但潜在的机制仍未探索。这里,我们结合了游离幼虫尾蚴和脊椎动物寄生阶段的转录组学(RNA-Seq)和表观遗传学数据(针对H3K4me3,H3K27me3和H4K20me1组蛋白标记的ChIP-Seq)。第一次,我们描述了ZW女性剂量补偿状态的差异,取决于寄生状态:游离尾蚴显示全球剂量补偿,而脊椎动物阶段显示部分剂量补偿。我们还强调了尾蚴中Z染色体基因表达的区域差异,但不是在脊椎动物阶段。最后,我们在性别和阶段都具有Z染色体一致的允许染色质景观。我们认为,血吸虫的剂量补偿的特征在于Z特异性区域的染色质重塑机制。
    Differentiated sex chromosomes are accompanied by a difference in gene dose between X/Z-specific and autosomal genes. At the transcriptomic level, these sex-linked genes can lead to expression imbalance, or gene dosage can be compensated by epigenetic mechanisms and results into expression level equalization. Schistosoma mansoni has been previously described as a ZW species (i.e., female heterogamety, in opposition to XY male heterogametic species) with a partial dosage compensation, but underlying mechanisms are still unexplored. Here, we combine transcriptomic (RNA-Seq) and epigenetic data (ChIP-Seq against H3K4me3, H3K27me3, and H4K20me1 histone marks) in free larval cercariae and intravertebrate parasitic stages. For the first time, we describe differences in dosage compensation status in ZW females, depending on the parasitic status: free cercariae display global dosage compensation, whereas intravertebrate stages show a partial dosage compensation. We also highlight regional differences of gene expression along the Z chromosome in cercariae, but not in the intravertebrate stages. Finally, we feature a consistent permissive chromatin landscape of the Z chromosome in both sexes and stages. We argue that dosage compensation in schistosomes is characterized by chromatin remodeling mechanisms in the Z-specific region.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The terrestrial isopod Armadillidium vulgare is an original model to study the evolution of sex determination and symbiosis in animals. Its sex can be determined by ZW sex chromosomes, or by feminizing Wolbachia bacterial endosymbionts. Here, we report the sequence and analysis of the ZW female genome of A. vulgare. A distinguishing feature of the 1.72 gigabase assembly is the abundance of repeats (68% of the genome). We show that the Z and W sex chromosomes are essentially undifferentiated at the molecular level and the W-specific region is extremely small (at most several hundreds of kilobases). Our results suggest that recombination suppression has not spread very far from the sex-determining locus, if at all. This is consistent with A. vulgare possessing evolutionarily young sex chromosomes. We characterized multiple Wolbachia nuclear inserts in the A. vulgare genome, none of which is associated with the W-specific region. We also identified several candidate genes that may be involved in the sex determination or sexual differentiation pathways. The A. vulgare genome serves as a resource for studying the biology and evolution of crustaceans, one of the most speciose and emblematic metazoan groups.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The advanced snakes (Caenophidia), the important amniote lineage encompassing more than 3,000 living species, possess highly conserved female heterogamety across all families. However, we still lack any knowledge on the gene(s) and the molecular mechanism controlling sex determination. Triploid individuals spontaneously appear in populations of diploid species and can provide an important insight into the evolution of sex determination. Here, we report a case of spontaneous triploidy in a male of the twin-spotted ratsnake (Elaphe bimaculata) with ZZW sex chromosomes. We speculate that as both ZZ and ZZW individuals develop male gonads, the ratio between the number of Z chromosomes and autosomes, and not the presence of the W chromosome in the genome, drives sex determination in the advanced snakes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The magpie moth, Abraxas grossulariata, is an iconic species in which female heterogamety was discovered at the beginning of the 20th century. However, the sex chromosomes of this species have not yet been cytologically identified. We describe the sex chromosomes of A. grossulariata and its congener, A. sylvata. Although these species split only around 9.5 million years ago, and both species have the expected WZ/ZZ chromosomal system of sex determination and their sex chromosomes share the major ribosomal DNA (rDNA) representing the nucleolar organizer region (NOR), we found major differences between their karyotypes, including between their sex chromosomes. The species differ in chromosome number, which is 2n = 56 in A. grossularita and 2n = 58 in A. sylvata. In addition, A. grossularita autosomes exhibit massive autosomal blocks of heterochromatin, which is a very rare phenomenon in Lepidoptera, whereas the autosomes of A. sylvata are completely devoid of distinct heterochromatin. Their W chromosomes differ greatly. Although they are largely composed of female-specific DNA sequences, as shown by comparative genomic hybridization, cross-species W-chromosome painting revealed considerable sequence differences between them. The results suggest a relatively rapid molecular divergence of Abraxas W chromosomes by the independent spreading of female-specific repetitive sequences.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Genes that promote sexual conflict, such as those with a sex-limited fitness benefit, are expected to accumulate differentially on sex chromosomes relative to autosomes. Few tests of this hypothesis exist for male homogametic (ZZ) taxa, however, and most use RNA expression data to identify such genes. Here, we employ a different identification method by using proteomic analysis of sperm cells to identify genes with a sex-limited benefit. We tested for a bias in genomic location of sperm protein genes in two species of Lepidoptera. An excess of sperm protein genes was identified on the Z chromosomes of both the Carolina sphinx moth (Manduca sexta) and the monarch butterfly (Danaus plexippus). Taking into consideration a Z-autosome fusion in monarchs, we discover that the ancestrally sex-linked portion of the genome is the source of this enrichment, while the newly sex-linked portion still appears similar to autosomes in relative abundance of sperm protein genes. Together, these results point to an enrichment of male-beneficial genes on the Z chromosome and demonstrate the usefulness of proteomic datasets in sexual conflict research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号