fast charging

快速充电
  • 文章类型: Journal Article
    低劣的快速充电和低温性能仍然是锂离子电池的障碍。克服这一障碍是极其具有挑战性的,主要是由于商业碳酸亚乙酯(EC)基电解质的低电导率和具有差的Li+离子扩散动力学的不期望的固体电解质中间相的形成。这里,通过掺入氟化酯的一系列无EC快速充电电解质(FCE),三氟乙酸甲酯(MTFA),作为一种特殊的共溶剂,加入到一个实际可行的LiPF6-碳酸二甲酯-氟代碳酸亚乙酯体系中,据报道。具有溶剂主导的溶剂化结构,MTFA有利于薄型的形成,然而健壮,阴极和阳极上的中间相。商用1Ah石墨|填充有FCE的LiNi0.8Mn0.1Co0.1O2袋装电池在3C和4C(15分钟)充电速率下在3000个循环中表现出≈80%的容量保留率在0-100%荷电状态的全部范围内。此外,即使在-20°C的低工作温度下,1Ah电池在2C放电速率下保持0.65Ah的高容量,并且在C/5速率下循环时几乎没有显示出容量衰减。这项工作强调了电解质设计在实现超快充电和低温性能方面的力量。
    Inferior fast-charging and low-temperature performances remain a hurdle for lithium-ion batteries. Overcoming this hurdle is extremely challenging primarily due to the low conductivity of commercial ethylene carbonate (EC)-based electrolytes and the formation of undesirable solid electrolyte interphases with poor Li+-ion diffusion kinetics. Here, a series of EC-free fast-charging electrolytes (FCEs) by incorporating a fluorinated ester, methyl trifluoroacetate (MTFA), as a special cosolvent into a practically viable LiPF6-dimethyl carbonate-fluoroethylene carbonate system, is reported. With a solvent-dominated solvation structure, MTFA facilitates the formation of thin, yet robust, interphases on both the cathode and anode. Commercial 1 Ah graphite|LiNi0.8Mn0.1Co0.1O2 pouch cells filled with the FCE exhibit ≈80% capacity retention over 3000 cycles at 3 C and 4 C (15 min) charging rates in the full range of 0-100% state-of-charge. Moreover, even at a low operating temperature of -20 °C, the 1 Ah cell retains a high capacity of 0.65 Ah at a 2 C discharge rate and displays virtually no capacity fade on cycling at a C/5 rate. The work highlights the power of electrolyte design in achieving extra-fast-charging and low-temperature performances.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    传统的基于碳酸乙烯酯(EC)的电解质由于缓慢的Li迁移动力学和不稳定的固体电解质界面(SEI)而在快速充电和低温条件下限制了硅碳(Si-C)阳极的应用。在这里,受水生植物的有效水净化和土壤稳定的启发,使用凝胶聚合物电解质(GPE)设计了具有3D去溶剂化界面的稳定SEI,在界面和稳定的SEI内加速Li+去溶剂化和迁移。正如理论模拟和实验结果所证明的那样,得到的聚(1,3-二氧戊环)(PDOL),通过1,3-二氧戊环(DOL)的原位开环聚合制备,创建一个3D去溶剂区,改善界面处的Li去溶剂化,并产生具有高Li离子电导率(5.73mScm-1)的无定形GPE。此外,更多的阴离子参与溶剂化结构,形成阴离子衍生的稳定SEI并改善Li+通过SEI的转运。因此,Si-C阳极在室温(RT)和低温(-40°C)下与GPE实现了优异的倍率性能。与LiFePO4阴极耦合的袋式全电池在5C/5C下进行500次循环后获得97.42mAhg-1。这种创新设计的3D去溶剂化接口和SEI代表了开发快速充电和低温电池的重大突破。
    Traditional ethylene carbonate (EC)-based electrolytes constrain the applications of silicon carbon (Si-C) anodes under fast-charging and low-temperature conditions due to sluggish Li+ migration kinetics and unstable solid electrolyte interphase (SEI). Herein, inspired by the efficient water purification and soil stabilization of aquatic plants, a stable SEI with a 3D desolvation interface is designed with gel polymer electrolyte (GPE), accelerating Li+ desolvation and migration at the interface and within stable SEI. As demonstrated by theoretical simulations and experiment results, the resulting poly(1,3-dioxolane) (PDOL), prepared by in situ ring-opening polymerization of 1,3-dioxolane (DOL), creates a 3D desolvation area, improving the Li+ desolvation at the interface and yielding an amorphous GPE with a high Li+ ionic conductivity (5.73 mS cm-1). Furthermore, more anions participate in the solvated structure, forming an anion-derived stable SEI and improving Li+ transport through SEI. Consequently, the Si-C anode achieves excellent rate performance with GPE at room temperature (RT) and low temperature (-40 °C). The pouch full cell coupled with LiFePO4 cathode obtains 97.42 mAh g-1 after 500 cycles at 5 C/5 C. This innovatively designed 3D desolvation interface and SEI represent significant breakthroughs for developing fast-charging and low-temperature batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    石墨基锂离子电池在电动汽车市场取得了巨大的成功。然而,他们遭受性能下降,特别是在快速充电和低温下。基于碳酸酯的传统电解质具有缓慢的去溶剂化动力学,被识别为速率确定步骤。这里,以四氢吡喃(THP)作为溶剂的弱溶剂化醚电解质被设计成能够在石墨阳极中实现可逆且快速的锂离子(Li+)嵌入。与传统的醚基电解质不同,它们很容易嵌入石墨层中,基于THP的电解质显示出快速的去溶剂化能力,并且可以与石墨阳极很好地匹配。此外,Li+和THP之间的弱互连允许更多的阴离子进入Li+的溶剂化壳,诱导富含无机物的界面,从而抑制副反应。因此,磷酸铁锂/石墨软包电池(3Ah)与THP电解质显示在2C充电500次循环后80.3%的容量保持率,远高于酯电解质体系(200次循环后的7.6%)。在4C充电时,放电容量从2.29Ah的酯增加到2.96Ah的THP。此外,电池可以在宽工作温度范围内正常工作(-20至60°C)。我们的电解质设计提供了在快速充电和宽温度下对锂离子电池的一些了解。
    Graphite-based lithium-ion batteries have succeeded greatly in the electric vehicle market. However, they suffer from performance deterioration, especially at fast charging and low temperatures. Traditional electrolytes based on carbonated esters have sluggish desolvation kinetics, recognized as the rate-determining step. Here, a weakly solvating ether electrolyte with tetrahydropyran (THP) as the solvent is designed to enable reversible and fast lithium-ion (Li+) intercalation in the graphite anode. Unlike traditional ether-based electrolytes which easily cointercalate into the graphite layers, the THP-based electrolyte shows fast desolvation ability and can match well with the graphite anode. In addition, the weak interconnection between Li+ and THP allows more anions to come into the solvating shell of Li+, inducing an inorganic-rich interface and thus suppressing the side reactions. As a result, the lithium iron phosphate/graphite pouch cell (3 Ah) with the THP electrolyte shows a capacity retention of 80.3% after 500 cycles at 2 C charging, much higher than that of the ester electrolyte system (7.6% after 200 cycles). At 4 C charging, the discharging capacity is increased from 2.29 Ah of esters to 2.96 Ah of THP. Furthermore, the cell can work normally over wide working temperatures (-20 to 60 °C). Our electrolyte design provides some understanding of lithium-ion batteries at fast charging and wide temperatures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    具有快速和可视化功能的充电电源在信息和新能源行业中具有广泛的应用。在本文中,提出了基于WO3薄膜和Zn片的可视化接触式快速充电电源,并制作了原型设备。与传统电池的充电方式不同,充电是通过与用水润湿的WO3膜接触的Zn片实现的,导致WO3快速变色。理论研究表明,Zn片与水分子之间的相互作用是WO3薄膜颜色变化的主要原因。在锌片和水的存在下,WO3薄膜在10s内完成着色状态,器件的开路电压为0.7V,可用于驱动各种电子串并联连接。本研究介绍了一种诱导WO3薄膜着色的新方法,并提出了一种不同于传统电源的快速充电模式。为未来快速充电在电能领域的发展提供了宝贵的启示。
    Charging power supplies with both fast and visualization functions have a wide range of applications in the information and new energy industries. In this paper, the visualized and contact-type fast charging power supply based on WO3 film and Zn sheet is presented, and the prototype devices are fabricated. Different with the charging method of conventional batteries, charging is achieved by a Zn sheet contacting with a WO3 film moistened with water, resulting in a rapid discoloration of WO3. Theoretical investigation indicates that the interaction between Zn sheet and water molecules is the primary cause of the color change in the WO3 film. The WO3 film completes the colouring state within 10 s in the presence of Zn sheet and water, and the open-circuit voltage of the device is 0.7 V, which can be used to drive various electronics by series-parallel connection. This research introduces a novel method to induce colouring of WO3 films and proposes a fast charging mode different from traditional power sources. It provides valuable insights for the future development of fast charging in the field of electrical energy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    锂离子电池退化和安全事件通常归因于不期望的金属锂电镀。自从他们被释放,锂离子电池电极已经逐渐变厚以提供更高的能量密度。然而,在这些较厚的配对中电镀的倾向还没有得到很好的理解。在这里,我们将实验易于电镀的条件与强大的中尺度模型相结合,以检查容量范围为2.5至6mAh/cm2的电极配对,负极至正极(N/P)电极面积容量比为0.9至1.8,而无需进行广泛的老化测试。使用实验和中尺度模型,我们发现,随着电极厚度的增加,从传统的高充电状态(SOC)型电镀到高过电位(OP)型电镀的转变。这两种电镀模式具有不同的形态,通过光学显微镜和电化学签名鉴定。我们证明了在这些电镀模式收敛的操作条件下,存在高电镀倾向,揭示了预测和避免这种重叠对于给定的电极配对的重要性。Further,我们发现更厚的电极,容量超过3mAh/cm2或厚度>75μm,容易出现高OP,限制负电极(NE)的利用和防止截面尺寸过大的NE减轻电镀。这里,它只是有助于增加质量和体积。实验热梯度和中尺度模型组合或独立地提供了能够探测电极设计特征的温和变化的性能和安全影响的技术。
    Li-ion battery degradation and safety events are often attributed to undesirable metallic lithium plating. Since their release, Li-ion battery electrodes have been made progressively thicker to provide a higher energy density. However, the propensity for plating in these thicker pairings is not well understood. Herein, we combine an experimental plating-prone condition with robust mesoscale modeling to examine electrode pairings with capacities ranging from 2.5 to 6 mAh/cm2 and negative to positive (N/P) electrode areal capacity ratio from 0.9 to 1.8 without the need for extensive aging tests. Using both experimentation and a mesoscale model, we identify a shift from conventional high state-of-charge (SOC) type plating to high overpotential (OP) type plating as electrode thickness increases. These two plating modes have distinct morphologies, identified by optical microscopy and electrochemical signatures. We demonstrate that under operating conditions where these plating modes converge, a high propensity of plating exists, revealing the importance of predicting and avoiding this overlap for a given electrode pairing. Further, we identify that thicker electrodes, beyond a capacity of 3 mAh/cm2 or thickness >75 μm, are prone to high OP, limiting negative electrode (NE) utilization and preventing cross-sectional oversizing the NE from mitigating plating. Here, it simply contributes to added mass and volume. The experimental thermal gradient and mesoscale model either combined or independently provide techniques capable of probing performance and safety implications of mild changes to electrode design features.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    钠离子电池(SIB),以平衡的能量密度和成本效益而闻名,被定位为锂离子电池(LIB)的有希望的补充和铅酸蓄电池的替代品,特别是在低速电动汽车和大规模储能领域。尽管潜力巨大,由于能量密度较低而导致的距离焦虑的担忧强调了快速充电技术的重要性,这推动了高倍率电极材料的探索。在这方面,聚阴离子阴极材料正在作为有希望的候选物出现。然而,它们在电子传导性方面的内在限制对同步电子和离子传输提出了挑战,阻碍了它们对快速充电应用的适用性。这篇综述提供了在充电/放电过程中钠离子迁移的全面分析,强调它是快速充电的关键限速步骤。通过深入研究内在动力学,我们确定并总结了制约快速充电特性的关键因素。然后引入创新的改性路线,以缩短迁移路径和增加扩散系数为重点,提供对可行策略的详细见解。此外,讨论从半细胞扩展到全细胞,解决将聚阴离子材料从实验室过渡到实际应用的挑战和机遇。这篇综述旨在为高速率聚阴离子阴极的发展提供有价值的见解,承认他们在推进快速充电SIB方面的关键作用。本文受版权保护。保留所有权利。
    Sodium-ion batteries (SIBs), recognized for balanced energy density and cost-effectiveness, are positioned as a promising complement to lithium-ion batteries (LIBs) and a substitute for lead-acid batteries, particularly in low-speed electric vehicles and large-scale energy storage. Despite their extensive potential, concerns about range anxiety due to lower energy density underscore the importance of fast-charging technologies, which drives the exploration of high-rate electrode materials. Polyanionic cathode materials are emerging as promising candidates in this regard. However, their intrinsic limitation in electronic conductivity poses challenges for synchronized electron and ion transport, hindering their suitability for fast-charging applications. This review provides a comprehensive analysis of sodium ion migration during charging/discharging, highlighting it as a critical rate-limiting step for fast charging. By delving into intrinsic dynamics, key factors that constrain fast-charging characteristics are identified and summarized. Innovative modification routes are then introduced, with a focus on shortening migration paths and increasing diffusion coefficients, providing detailed insights into feasible strategies. Moreover, the discussion extends beyond half cells to full cells, addressing challenges and opportunities in transitioning polyanionic materials from the laboratory to practical applications. This review aims to offer valuable insights into the development of high-rate polyanionic cathodes, acknowledging their pivotal role in advancing fast-charging SIBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    钠离子电池(SIB)作为锂离子电池的补充技术,由于钠资源丰富,发展迅速。然而,延长的充电时间和低能量密度对电动汽车中SIB的广泛使用提出了重大挑战。为了克服这个障碍,有相当多的重点是开发快速充电的阳极材料Na+扩散和优越的反应动力学。在这篇评论中,研究了限制阳极材料快速充电的关键因素,其中全面概述了各种阳极材料的主要进展和快速充电特性。具体来说,它系统地剖析了提高阳极材料倍率性能的考虑因素,涵盖多孔工程等方面,电解质去溶剂化策略,电极/电解质中间相,电子电导率/离子扩散率,和拟电容离子存储。最后,提出了发展SIBs快充负极材料的方向和前景,旨在为大功率SIB的进一步发展提供有价值的参考。本文受版权保护。保留所有权利。
    Sodium-ion batteries (SIBs) have undergone rapid development as a complementary technology to lithium-ion batteries due to abundant sodium resources. However, the extended charging time and low energy density pose a significant challenge to the widespread use of SIBs in electric vehicles. To overcome this hurdle, there is considerable focus on developing fast-charging anode materials with rapid Na⁺ diffusion and superior reaction kinetics. Here, the key factors that limit the fast charging of anode materials are examined, which provides a comprehensive overview of the major advances and fast-charging characteristics across various anode materials. Specifically, it systematically dissects considerations to enhance the rate performance of anode materials, encompassing aspects such as porous engineering, electrolyte desolvation strategies, electrode/electrolyte interphase, electronic conductivity/ion diffusivity, and pseudocapacitive ion storage. Finally, the direction and prospects for developing fast-charging anode materials of SIBs are also proposed, aiming to provide a valuable reference for the further advancement of high-power SIBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管广泛用作商业阴极,LiFePO4中锂离子沿[010]方向的各向异性一维通道跳跃阻止了其在快速充电条件下的应用。在这里,我们采用超快非平衡高温冲击(HTS)技术将Li-Fe反位缺陷和拉伸应变可控地引入LiFePO4的晶格中。该设计使应变场对性能影响的研究从理论计算进一步扩展到实验的角度。Li-Fe反位缺陷的存在,使得Li+从边缘共享八面体的4a位跨ab平面移动到角共享八面体的4c位成为可能,产生不同于[010]的新扩散通道。同时,拉伸应变场的存在降低了新的二维扩散路径的能量势垒。在电化学实验和第一性原理计算的结合中,我们证明了Li-Fe反位缺陷和晶格应变的独特多尺度耦合结构促进了各向同性的二维沟道间Li+跳跃,导致优异的快速充电性能和循环稳定性(在10C下2000次循环后84.4%的高容量保留)。多尺度耦合加速Li+扩散动力学的新机制可以指导高倍率电极的设计。本文受版权保护。保留所有权利。
    Despite widely used as a commercial cathode, the anisotropic 1D channel hopping of lithium ions along the [010] direction in LiFePO4 prevents its application in fast charging conditions. Herein, an ultrafast nonequilibrium high-temperature shock technology is employed to controllably introduce the Li-Fe antisite defects and tensile strain into the lattice of LiFePO4. This design makes the study of the effect of the strain field on the performance further extended from the theoretical calculation to the experimental perspective. The existence of Li-Fe antisite defects makes it feasible for Li+ to move from the 4a site of the edge-sharing octahedra across the ab plane to 4c site of corner-sharing octahedra, producing a new diffusion channel different from [010]. Meanwhile, the presence of a tensile strain field reduces the energy barrier of the new 2D diffusion path. In the combination of electrochemical experiments and first-principles calculations, the unique multiscale coupling structure of Li-Fe antisite defects and lattice strain promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability (high-capacity retention of 84.4% after 2000 cycles at 10 C). The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high-rate electrodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    2D层状二硫化钼(MoS2)作为钠离子电池(SIB)中一种有吸引力的电极材料引起了广泛的关注,但是缓慢的传质动力学和容量衰减使其具有较差的循环能力。在这里,通过微乳液静电纺丝方法和随后的水热/热处理,设计了具有丰富氧空位的分层MoS2纳米片装饰的多孔TiO2纳米纤维(MoS2NSs@TiO2NFs)。MoS2NSs@TiO2NFs通过独特的多孔结构和异质成分改善了离子/电子传输动力学和长期循环性能。因此,电极表现出优异的长期Na储存容量(298.4mAhg-1在1100次循环的5Ag-1和235.6mAhg-1在7200次循环的10Ag-1)。采用Na3V2(PO4)3作为阴极,全电池在1.0Ag-1下在700次循环中保持269.6mAhg-1的期望容量。逐步插层转化和插入/提取赋予了优异的Na+储存性能,这对快速充电和长循环寿命SIB阳极材料的进步产生了有价值的见解。
    2D layered molybdenum disulfide (MoS2) has garnered considerable attention as an attractive electrode material in sodium-ion batteries (SIBs), but sluggish mass transfer kinetic and capacity fading make it suffer from inferior cycle capability. Herein, hierarchical MoS2 nanosheets decorated porous TiO2 nanofibers (MoS2 NSs@TiO2 NFs) with rich oxygen vacancies are engineered by microemulsion electrospinning method and subsequent hydrothermal/heat treatment. The MoS2 NSs@TiO2 NFs improves ion/electron transport kinetic and long-term cycling performance through distinctive porous structure and heterogeneous component. Consequently, the electrode exhibits excellent long-term Na storage capacity (298.4 mAh g-1 at 5 A g-1 over 1100 cycles and 235.6 mAh g-1 at 10 A g-1 over 7200 cycles). Employing Na3V2(PO4)3 as cathode, the full cell maintains a desirable capacity of 269.6 mAh g-1 over 700 cycles at 1.0 A g-1. The stepwise intercalation-conversion and insertion/extraction endows outstanding Na+ storage performance, which yields valuable insight into the advancement of fast-charging and long-cycle life SIBs anode materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    锂金属是下一代高能量密度可充电电池的非常有前途的阳极。然而,由于重复循环过程中不受控制的锂枝晶生长和无限体积膨胀,其实际应用面临挑战。在这里,通过用锂箔(Li@CeO2/CT)机械轧制和压制涂覆氧化铈的碳织物来设计复合锂阳极。原位生成的二氧化铈(CeO2)和三氧化铈(Ce2O3)形成具有降低的锂离子迁移势垒的异质结,促进锂离子的快速迁移。此外,CeO2和Ce2O3都表现出较高的锂吸附能量,实现锂离子的更快和更多分布的界面传输。此外,高比表面积的三维骨架可以有效降低局部电流密度,并且减轻在电镀/剥离时的锂体积变化。受益于这种独特的结构,构造了高度紧凑和均匀的锂沉积,允许Li@CeO2/CT对称电池在100mAcm-2的特殊高电流密度下保持稳定循环超过500个循环。当与LiNi0.91Co0.06Mn0.03O2(NCM91)阴极配对时,电池在1C下800次循环后达到74.3%的容量保持率,即使在4℃的高倍率下,在500次循环后也有81.1%的显著容量保持率。
    Lithium metal is a highly promising anode for next-generation high-energy-density rechargeable batteries. Nevertheless, its practical application faces challenges due to the uncontrolled lithium dendrites growth and infinite volumetric expansion during repetitive cycling. Herein, a composite lithium anode is designed by mechanically rolling and pressing a cerium oxide-coated carbon textile with lithium foil (Li@CeO2/CT). The in situ generated cerium dioxide (CeO2) and cerium trioxide (Ce2O3) form a heterojunction with a reduced lithium-ion migration barrier, facilitating the rapid lithium ions migration. Additionally, both CeO2 and Ce2O3 exhibit higher adsorbed energy with lithium, enabling faster and more distributed interfacial transport of lithium ions. Furthermore, the high specific surface area of 3D skeleton can effectively reduce local current density, and alleviate the lithium volumetric changes upon plating/stripping. Benefiting from this unique structure, the highly compact and uniform lithium deposition is constructed, allowing the Li@CeO2/CT symmetric cells to maintain a stable cycling for over 500 cycles at an exceptional high current density of 100 mA cm-2. When paired with LiNi0.91Co0.06Mn0.03O2 (NCM91) cathode, the cell achieves 74.3% capacity retention after 800 cycles at 1 C, and a remarkable capacity retention of 81.1% after 500 cycles even at a high rate of 4  C.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号