fair

FAIR
  • 文章类型: Journal Article
    TheFacilityforAntiproonandIonResearch(FAIR)isinitsfinalconstructionstagenexttothecampusoftheGesellschaftfürSchwerionenforschungHelmholtzzentrumforheavy-ionresearchinDarmstadt,德国。一旦它开始运作,在未来的几十年里,它将成为许多基础科学及其在欧洲应用的主要核物理研究设施。由于新的片段分离器的能力,Super-FragmentSeparator,产生能量范围高达约2GeV/核子的高强度放射性离子束,这些可以用于各种核反应。这为各种领域和尺度的各种核结构研究提供了独特的机会:从低能物理通过多中子系统和光晕的研究到高密度核物质和状态方程,重离子碰撞后,核和超核中短程相关性的裂变和研究。在FAIR建立的新开发的相对论放射性束(R3B)反应将是此类研究的最合适和通用的。给出了R3B预计的突出物理案例的概述,以及未来可能的机会,在公平。本文是“核物理的极限位置:从强子到中子星”主题的一部分。
    The Facility for Antiproton and Ion Research (FAIR) is in its final construction stage next to the campus of the Gesellschaft für Schwerionenforschung Helmholtzzentrum for heavy-ion research in Darmstadt, Germany. Once it starts its operation, it will be the main nuclear physics research facility in many basic sciences and their applications in Europe for the coming decades. Owing to the ability of the new fragment separator, Super-FRagment Separator, to produce high-intensity radioactive ion beams in the energy range up to about 2 GeV/nucleon, these can be used in various nuclear reactions. This opens a unique opportunity for various nuclear structure studies across a range of fields and scales: from low-energy physics via the investigation of multi-neutron systems and halos to high-density nuclear matter and the equation of state, following heavy-ion collisions, fission and study of short-range correlations in nuclei and hypernuclei. The newly developed reactions with relativistic radioactive beams (R3B) set up at FAIR would be the most suitable and versatile for such studies. An overview of highlighted physics cases foreseen at R3B is given, along with possible future opportunities, at FAIR. This article is part of the theme issue \'The liminal position of Nuclear Physics: from hadrons to neutron stars\'.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    机器学习(ML)和深度学习(DL)的最新发展在蛋白质组学中具有巨大的应用潜力。例如生成光谱库,提高肽的鉴定,优化目标采集模式。尽管针对各种应用和肽特性的新ML/DL模型经常出版,社区采用这些模型的速度很慢,这主要是由于技术挑战。我们相信,为了让社区更好地利用最先进的模式,更多的注意力应该花在使模型易于使用和社区可访问上。为了促进这一点,我们开发了Koina,一个开源的容器,分散式和可在线访问的高性能预测服务,可在任何管道中使用ML/DL模型。以广泛使用的FragPipe计算平台为例,我们展示了Koina如何与现有的蛋白质组学软件工具轻松集成,以及这些集成如何改善数据分析.
    Recent developments in machine-learning (ML) and deep-learning (DL) have immense potential for applications in proteomics, such as generating spectral libraries, improving peptide identification, and optimizing targeted acquisition modes. Although new ML/DL models for various applications and peptide properties are frequently published, the rate at which these models are adopted by the community is slow, which is mostly due to technical challenges. We believe that, for the community to make better use of state-of-the-art models, more attention should be spent on making models easy to use and accessible by the community. To facilitate this, we developed Koina, an open-source containerized, decentralized and online-accessible high-performance prediction service that enables ML/DL model usage in any pipeline. Using the widely used FragPipe computational platform as example, we show how Koina can be easily integrated with existing proteomics software tools and how these integrations improve data analysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:人工智能(AI)和机器学习(ML)技术的设计和开发持续迅速,尽管在目前的形式作为解决所有社会人道主义问题和复杂性的实践和纪律存在重大限制。从这些限制中,迫切需要在服务不足的社区中加强AI和ML素养,并建立更多样化的AI和ML设计和开发劳动力,从事健康研究。
    目的:AI和ML有可能解释和评估导致健康和疾病的各种因素,并改善预防,诊断,和治疗。这里,我们描述了人工智能/机器学习联盟内部最近的活动,以促进健康公平和研究人员多样性(AIM-AHEAD)道德和公平工作组(EEWG),这些活动导致了可交付成果的开发,这将有助于将道德和公平置于AI和ML应用的最前沿,以建立生物医学研究的公平性。教育,和医疗保健。
    方法:AIM-AHEADEEWG创建于2021年,第1年有3个联合主席和51个成员,第2年有约40个成员。这两年的成员包括AIM-AHEAD主要调查员,协研究者,领导研究员,和研究员。EEWG使用了一种使用轮询的改进的Delphi方法,排名,和其他活动,以促进围绕切实步骤的讨论,关键术语,和定义需要确保道德和公平处于AI和ML应用的最前沿,以建立生物医学研究的公平性,教育,和医疗保健。
    结果:EEWG制定了一套道德和公平原则,词汇表,和采访指南。道德和公平原则包括5个核心原则,每个都有子部分,阐明了与历史上和目前代表性不足的社区的利益相关者合作的最佳做法。词汇表包含12个术语和定义,特别强调最佳发展,精致,以及AI和ML在健康公平研究中的实施。为了配合词汇表,EEWG开发了一个概念关系图,描述了定义概念的逻辑流程和定义概念之间的关系。最后,面试指南提供了可以使用或调整的问题,以获得利益相关者和社区对原则和词汇表的观点。
    结论:需要围绕我们的原则和术语表持续参与,以识别和预测它们在AI和ML研究环境中使用的潜在局限性。特别是对于资源有限的机构。这需要时间,仔细考虑,和诚实的讨论,围绕什么将参与激励分类为有意义的,以支持和维持他们的全面参与。通过放慢速度,以满足历史上和目前资源不足的机构和社区,以及它们能够参与和竞争的地方,实现所需多样性的潜力更大,伦理,以及健康研究中AI和ML实施的公平性。
    BACKGROUND: Artificial intelligence (AI) and machine learning (ML) technology design and development continues to be rapid, despite major limitations in its current form as a practice and discipline to address all sociohumanitarian issues and complexities. From these limitations emerges an imperative to strengthen AI and ML literacy in underserved communities and build a more diverse AI and ML design and development workforce engaged in health research.
    OBJECTIVE: AI and ML has the potential to account for and assess a variety of factors that contribute to health and disease and to improve prevention, diagnosis, and therapy. Here, we describe recent activities within the Artificial Intelligence/Machine Learning Consortium to Advance Health Equity and Researcher Diversity (AIM-AHEAD) Ethics and Equity Workgroup (EEWG) that led to the development of deliverables that will help put ethics and fairness at the forefront of AI and ML applications to build equity in biomedical research, education, and health care.
    METHODS: The AIM-AHEAD EEWG was created in 2021 with 3 cochairs and 51 members in year 1 and 2 cochairs and ~40 members in year 2. Members in both years included AIM-AHEAD principal investigators, coinvestigators, leadership fellows, and research fellows. The EEWG used a modified Delphi approach using polling, ranking, and other exercises to facilitate discussions around tangible steps, key terms, and definitions needed to ensure that ethics and fairness are at the forefront of AI and ML applications to build equity in biomedical research, education, and health care.
    RESULTS: The EEWG developed a set of ethics and equity principles, a glossary, and an interview guide. The ethics and equity principles comprise 5 core principles, each with subparts, which articulate best practices for working with stakeholders from historically and presently underrepresented communities. The glossary contains 12 terms and definitions, with particular emphasis on optimal development, refinement, and implementation of AI and ML in health equity research. To accompany the glossary, the EEWG developed a concept relationship diagram that describes the logical flow of and relationship between the definitional concepts. Lastly, the interview guide provides questions that can be used or adapted to garner stakeholder and community perspectives on the principles and glossary.
    CONCLUSIONS: Ongoing engagement is needed around our principles and glossary to identify and predict potential limitations in their uses in AI and ML research settings, especially for institutions with limited resources. This requires time, careful consideration, and honest discussions around what classifies an engagement incentive as meaningful to support and sustain their full engagement. By slowing down to meet historically and presently underresourced institutions and communities where they are and where they are capable of engaging and competing, there is higher potential to achieve needed diversity, ethics, and equity in AI and ML implementation in health research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本文介绍了数据(图像,观察,元数据)在阿姆斯特丹供水沙丘中三种不同的相机陷阱部署,荷兰沿海沙丘的Natura2000自然保护区。飞行员旨在确定不同类型的摄像机部署方式(例如,常规与广角镜头,各种高度,内部/外部外壳)可能会影响物种检测,以及如何部署自主野生动物监测网络。两名飞行员在食草动物的驱逐中进行,主要发现了欧洲兔子(Oryctolaguscuniculus)和红狐狸(Vulpesvulpes)。第三个试点是在机场外进行的,欧洲休养鹿(DamaDama)最为普遍。在所有三名飞行员中,使用Agouti平台共注释了47,597张图像.所有注释均由人类专家进行验证和质量检查。在2021年至2023年期间,使用11个野生动物相机共观察了20种不同物种(包括人类)的2,779次观测。原始图像文件(不包括人类),图像元数据,使用CamtrapDP开放标准和GBIF的扩展数据发布功能共享每个试点的部署元数据和观察结果,以提高可查找性,可访问性,互操作性,以及这些数据的可重用性。这些数据可以免费获得,可用于开发人工智能(AI)算法,该算法可从野生动物相机图像中自动检测和识别物种。
    This paper presents the data (images, observations, metadata) of three different deployments of camera traps in the Amsterdam Water Supply Dunes, a Natura 2000 nature reserve in the coastal dunes of the Netherlands. The pilots were aimed at determining how different types of camera deployment (e.g. regular vs. wide lens, various heights, inside/outside exclosures) might influence species detections, and how to deploy autonomous wildlife monitoring networks. Two pilots were conducted in herbivore exclosures and mainly detected European rabbits (Oryctolagus cuniculus) and red fox (Vulpes vulpes). The third pilot was conducted outside exclosures, with the European fallow deer (Dama dama) being most prevalent. Across all three pilots, a total of 47,597 images were annotated using the Agouti platform. All annotations were verified and quality-checked by a human expert. A total of 2,779 observations of 20 different species (including humans) were observed using 11 wildlife cameras during 2021-2023. The raw image files (excluding humans), image metadata, deployment metadata and observations from each pilot are shared using the Camtrap DP open standard and the extended data publishing capabilities of GBIF to increase the findability, accessibility, interoperability, and reusability of this data. The data are freely available and can be used for developing artificial intelligence (AI) algorithms that automatically detect and identify species from wildlife camera images.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目标:2023年10月,田纳西州卫生部发现在参加同一农场动物展览的学校实地考察的小学生中爆发了产志贺毒素大肠杆菌(STEC)O157:H7感染。我们的目标是确定STEC来源并通过启动流行病学来预防其他疾病,实验室和环境调查。
    结果:我们通过实验室监测和调查参加展览的儿童的看护人来确定病例。可能的病例定义为就诊后患有腹部绞痛或腹泻的疾病;确诊病例为参与者或家庭接触者的实验室确诊的STEC感染。进行了实地考察,和活动组织者接受了采访。人类大便,通过实时聚合酶链反应(PCR)测试动物粪便和环境样品的STECO157:H7,培养和全基因组测序(WGS)。大约2300名小学生在两天内参加了动物展览。实地考察活动包括与不同的农场动物物种接触,在动物围栏外喝巴氏杀菌的牛奶,并在现场的独立建筑中吃午餐。我们收到了399名护理人员对443名(19%)动物展览参与者的调查回复。我们在9月26日至10月12日期间确定了9例确诊病例和55例可能病例。7名1-7岁儿童住院。4名1-6岁儿童出现溶血性尿毒综合征,无一例死亡。实验室测试通过培养来自八个人粪便样品的鉴定STECO157:H7,通过WGS具有0-1个等位基因差异。3个环境样品通过PCR检测到志贺毒素(stx2)基因,但未通过培养回收STEC分离株。
    结论:这是田纳西州报道的与动物展览相关的最大的STECO157:H7暴发。我们确定了教育学校工作人员的机会,活动组织者和家庭关于与动物接触相关的人畜共患疾病风险和公布的预防措施。
    OBJECTIVE: In October 2023, the Tennessee Department of Health identified an outbreak of Shiga toxin-producing Escherichia coli (STEC) O157:H7 infections among elementary school students who attended school field trips to the same farm animal exhibit. Our aim was to determine STEC source and prevent additional illnesses by initiating epidemiologic, laboratory and environmental investigations.
    RESULTS: We identified cases using laboratory-based surveillance and by surveying caregivers of children who attended the exhibit. Probable cases were defined as illness with abdominal cramps or diarrhoea after attendance; confirmed cases were laboratory-confirmed STEC infection in an attendee or household contact. A site visit was conducted, and event organizers were interviewed. Human stool, animal faeces and environmental samples were tested for STEC O157:H7 by real-time polymerase chain reaction (PCR), culture and whole-genome sequencing (WGS). Approximately 2300 elementary school students attended the animal exhibit during 2 days. Field trip activities included contact with different farm animal species, drinking pasteurized milk outside animal enclosures and eating lunch in a separate building onsite. We received survey responses from 399 caregivers for 443 (19%) animal exhibit attendees. We identified 9 confirmed and 55 probable cases with illness onset dates during 26 September to 12 October. Seven children aged 1-7 years were hospitalized. Four children aged 1-6 years experienced haemolytic uraemic syndrome; none died. Laboratory testing identified STEC O157:H7 by culture from eight human stool samples with 0-1 allele difference by WGS. Three environmental samples had Shiga toxin (stx 2) genes detected by PCR, but no STEC isolates were recovered by culture.
    CONCLUSIONS: This is the largest reported STEC O157:H7 outbreak associated with an animal exhibit in Tennessee. We identified opportunities for educating school staff, event organizers and families about zoonotic disease risks associated with animal contact and published prevention measures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    FAIR数字对象(FDO)是欧洲开放科学云(EOSC)强调的新兴概念,是构建机器可操作研究产出生态系统的潜在候选者。在这项工作中,我们系统地评估了FDO及其作为全局分布式对象系统的实现,通过使用涵盖互操作性的五种不同的概念框架,中间件,公平原则,EOSC要求和FDO指南本身。我们将FDO方法与已建立的关联数据实践和现有的Web体系结构进行了比较,并提供语义Web的简要历史,同时讨论为什么这些技术可能难以用于FDO目的。最后,我们为关联数据和FDO社区提出了进一步适应和调整的建议。
    FAIR Digital Object (FDO) is an emerging concept that is highlighted by European Open Science Cloud (EOSC) as a potential candidate for building an ecosystem of machine-actionable research outputs. In this work we systematically evaluate FDO and its implementations as a global distributed object system, by using five different conceptual frameworks that cover interoperability, middleware, FAIR principles, EOSC requirements and FDO guidelines themself. We compare the FDO approach with established Linked Data practices and the existing Web architecture, and provide a brief history of the Semantic Web while discussing why these technologies may have been difficult to adopt for FDO purposes. We conclude with recommendations for both Linked Data and FDO communities to further their adaptation and alignment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人工智能(AI)在包括医疗保健和临床实践在内的广泛学科中具有广泛的应用。高分辨率全载玻片明场显微镜的进展允许对组织学染色的组织切片进行数字化,产生千兆像素规模的全幻灯片图像(WSI)。在过去十年中,基于深度神经网络(DNN)的AI技术在计算和革命方面的显着改进使我们能够集成大规模并行的计算能力,尖端的人工智能算法,和大数据存储,管理,和处理。适用于WSI,人工智能为改善疾病诊断和预后创造了机会,最终目标是加强精准医学和由此产生的患者护理。美国国立卫生研究院(NIH)已经认识到制定数据管理和发现的标准化原则对科学进步的重要性,并提出了Findable,可访问,互操作,可重复使用,(FAIR)数据原理1,旨在建立现代化的生物医学数据资源生态系统,以建立合作研究社区。根据这一使命,并在数字病理学中实现基于AI的图像分析的民主化,我们提出了CompRePS:一个端到端的自动化计算肾脏病理套件,它结合了巨大的可扩展性,按需云计算,和易于使用的基于Web的数据上传用户界面,storage,管理,幻灯片级可视化,和领域专家互动。此外,我们的平台在后端服务器中配备了内部和合作者开发的复杂AI算法,用于图像分析,以识别临床相关的微解剖功能组织单元(FTU)并提取图像特征。
    Artificial intelligence (AI) has extensive applications in a wide range of disciplines including healthcare and clinical practice. Advances in high-resolution whole-slide brightfield microscopy allow for the digitization of histologically stained tissue sections, producing gigapixel-scale whole-slide images (WSI). The significant improvement in computing and revolution of deep neural network (DNN)-based AI technologies over the last decade allow us to integrate massively parallelized computational power, cutting-edge AI algorithms, and big data storage, management, and processing. Applied to WSIs, AI has created opportunities for improved disease diagnostics and prognostics with the ultimate goal of enhancing precision medicine and resulting patient care. The National Institutes of Health (NIH) has recognized the importance of developing standardized principles for data management and discovery for the advancement of science and proposed the Findable, Accessible, Interoperable, Reusable, (FAIR) Data Principles1 with the goal of building a modernized biomedical data resource ecosystem to establish collaborative research communities. In line with this mission and to democratize AI-based image analysis in digital pathology, we propose ComPRePS: an end-to-end automated Computational Renal Pathology Suite which combines massive scalability, on-demand cloud computing, and an easy-to-use web-based user interface for data upload, storage, management, slide-level visualization, and domain expert interaction. Moreover, our platform is equipped with both in-house and collaborator developed sophisticated AI algorithms in the back-end server for image analysis to identify clinically relevant micro-anatomic functional tissue units (FTU) and to extract image features.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生物医学研究项目变得越来越复杂,需要技术解决方案来支持数据生命周期的所有阶段和FAIR原则的应用。在柏林卫生研究所(BIH),我们已经开发并建立了一种灵活且具有成本效益的方法来构建定制的云平台,以支持研究项目。该方法基于微服务架构和受支持服务组合的管理。在此基础上,我们为几个国际研究项目创建并维护了云平台。在这篇文章中,我们提出了我们的方法,并认为构建定制的云平台可以提供多个优势超过使用多项目平台。我们的方法可以转移到其他研究环境,并且可以很容易地被其他项目和其他服务提供商所适应。
    Biomedical research projects are becoming increasingly complex and require technological solutions that support all phases of the data lifecycle and application of the FAIR principles. At the Berlin Institute of Health (BIH), we have developed and established a flexible and cost-effective approach to building customized cloud platforms for supporting research projects. The approach is based on a microservice architecture and on the management of a portfolio of supported services. On this basis, we created and maintained cloud platforms for several international research projects. In this article, we present our approach and argue that building customized cloud platforms can offer multiple advantages over using multi-project platforms. Our approach is transferable to other research environments and can be easily adapted by other projects and other service providers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    增强适应性免疫受体库测序(AIRR-seq)数据分析的可重复性和可理解性对于科学进步至关重要。本研究提供了可重现的AIRR-seq数据分析指南,以及带有全面文档的现成管道集合。为此,使用ViaFoundry实现了十个常见的管道,管道管理和自动化的用户友好的界面。这伴随着版本化的容器,文档和归档功能。强调了预处理分析步骤的自动化以及根据特定研究需求修改管道参数的能力。AIRR-seq数据分析对不同的参数和设置高度敏感;使用此处提供的指南,证明了重现以前发表的结果的能力。这项工作促进了透明度,再现性,以及在AIRR-SEQ数据分析方面的合作,作为处理和记录其他研究领域生物信息学管道的模型。
    Enhancing the reproducibility and comprehension of adaptive immune receptor repertoire sequencing (AIRR-seq) data analysis is critical for scientific progress. This study presents guidelines for reproducible AIRR-seq data analysis, and a collection of ready-to-use pipelines with comprehensive documentation. To this end, ten common pipelines were implemented using ViaFoundry, a user-friendly interface for pipeline management and automation. This is accompanied by versioned containers, documentation and archiving capabilities. The automation of pre-processing analysis steps and the ability to modify pipeline parameters according to specific research needs are emphasized. AIRR-seq data analysis is highly sensitive to varying parameters and setups; using the guidelines presented here, the ability to reproduce previously published results is demonstrated. This work promotes transparency, reproducibility, and collaboration in AIRR-seq data analysis, serving as a model for handling and documenting bioinformatics pipelines in other research domains.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生物图像数据在整个生命和生物医学科学的不同研究领域产生。它通过现代推动科学进步的潜力,数据驱动的发现方法超越了学科边界。为了充分利用这种潜力,有必要制作生物成像数据,总的来说,多维显微镜图像和图像系列,公平,也就是说,可找到,可访问,可互操作和可重用。这些研究数据管理的公平原则现已在科学界广泛接受,并已被资助机构采纳,政策制定者和出版商。为了保持竞争力和研究的最前沿,对于研究人员和研究基础设施而言,将FAIR原则实施到日常工作中是一项必不可少但具有挑战性的任务。成像核心设施,获得成像设备和专业知识的成熟提供商,在生物成像研究数据管理方面处于领导这一转变的有利位置。它们位于研究小组的交叉点,IT基础设施提供商,该机构的管理,和显微镜供应商。在德国生物成像-显微镜和图像分析协会(GerBI-GMB)的框架内,近年来启动了跨机构工作组和第三方资助的项目,以提高生物成像界对FAIR生物图像数据管理的能力和能力。这里,我们提供了一个以成像核心设施为中心的观点,概述了德国的经验和当前策略,以促进与国际生物成像界密切相关的FAIR原则的实际采用。我们重点介绍了哪些工具和服务已准备好实施,以及FAIR生物图像数据的未来方向。
    Bioimage data are generated in diverse research fields throughout the life and biomedical sciences. Its potential for advancing scientific progress via modern, data-driven discovery approaches reaches beyond disciplinary borders. To fully exploit this potential, it is necessary to make bioimaging data, in general, multidimensional microscopy images and image series, FAIR, that is, findable, accessible, interoperable and reusable. These FAIR principles for research data management are now widely accepted in the scientific community and have been adopted by funding agencies, policymakers and publishers. To remain competitive and at the forefront of research, implementing the FAIR principles into daily routines is an essential but challenging task for researchers and research infrastructures. Imaging core facilities, well-established providers of access to imaging equipment and expertise, are in an excellent position to lead this transformation in bioimaging research data management. They are positioned at the intersection of research groups, IT infrastructure providers, the institution´s administration, and microscope vendors. In the frame of German BioImaging - Society for Microscopy and Image Analysis (GerBI-GMB), cross-institutional working groups and third-party funded projects were initiated in recent years to advance the bioimaging community\'s capability and capacity for FAIR bioimage data management. Here, we provide an imaging-core-facility-centric perspective outlining the experience and current strategies in Germany to facilitate the practical adoption of the FAIR principles closely aligned with the international bioimaging community. We highlight which tools and services are ready to be implemented and what the future directions for FAIR bioimage data have to offer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号