excitatory postsynaptic potentials

兴奋性突触后电位
  • 文章类型: Journal Article
    雌激素被认为部分地通过调节皮层和海马中的突触传递来调节认知功能。给予17β-雌二醇(E2)可以通过激活G蛋白偶联的雌激素受体1(GPER1)迅速增强海马中的兴奋性突触传递,并促进大鼠外侧内嗅皮质中的兴奋性突触传递。为了评估GPER1激活促进突触传递的机制,我们评估了急性10nME2给药对II/III层内嗅神经元药理学分离的兴奋性和抑制性突触电流的影响.在出生后第63天(PD)和74天之间对雌性Long-Evans大鼠进行卵巢切除,并植入真皮下E2胶囊以维持E2的持续低水平。在卵巢切除术后7至20天之间获得电生理记录。应用E220分钟不会显着影响AMPA或NMDA受体介导的兴奋性突触电流。然而,GABA受体介导的抑制性突触电流(IPSC)被E2显着降低,并在20分钟的洗脱期恢复至基线水平。在GPER1受体拮抗剂G15存在下阻断GABA介导的IPSC的抑制。GPER1可以调节蛋白激酶A(PKA),但用细胞内KT5720阻断PKA并不能阻止E2诱导的IPSC减少。GPER1还可以刺激细胞外信号调节激酶(ERK),GABAA受体的负调节剂,用PD90859阻断ERK的激活阻止了E2诱导的IPSC的减少。因此,E2可以导致GABA介导的IPSC中GPER1和ERK信号传导介导的快速减少。这提供了一种新机制,通过该机制,E2可以快速调节内嗅层II/III神经元的突触兴奋性,并且还可能导致其他大脑区域的E2和ERK依赖性突触传递改变。
    Estrogens are believed to modulate cognitive functions in part through the modulation of synaptic transmission in the cortex and hippocampus. Administration of 17β-estradiol (E2) can rapidly enhance excitatory synaptic transmission in the hippocampus and facilitate excitatory synaptic transmission in rat lateral entorhinal cortex via activation of the G protein-coupled estrogen receptor-1 (GPER1). To assess the mechanisms through which GPER1 activation facilitates synaptic transmission, we assessed the effects of acute 10 nM E2 administration on pharmacologically isolated evoked excitatory and inhibitory synaptic currents in layer II/III entorhinal neurons. Female Long-Evans rats were ovariectomized between postnatal day (PD) 63 and 74 and implanted with a subdermal E2 capsule to maintain continuous low levels of E2. Electrophysiological recordings were obtained between 7 and 20 days after ovariectomy. Application of E2 for 20 min did not significantly affect AMPA or NMDA receptor-mediated excitatory synaptic currents. However, GABA receptor-mediated inhibitory synaptic currents (IPSCs) were markedly reduced by E2 and returned towards baseline levels during the 20-min washout period. The inhibition of GABA-mediated IPSCs was blocked in the presence of the GPER1 receptor antagonist G15. GPER1 can modulate protein kinase A (PKA), but blocking PKA with intracellular KT5720 did not prevent the E2-induced reduction in IPSCs. GPER1 can also stimulate extracellular signal-regulated kinase (ERK), a negative modulator of GABAA receptors, and blocking activation of ERK with PD90859 prevented the E2-induced reduction of IPSCs. E2 can therefore result in a rapid GPER1 and ERK signaling-mediated reduction in GABA-mediated IPSCs. This provides a novel mechanism through which E2 can rapidly modulate synaptic excitability in entorhinal layer II/III neurons and may also contribute to E2 and ERK-dependent alterations in synaptic transmission in other brain areas.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    理论预测,树突内突触电位的非线性求和允许神经元执行线性不可分计算(LNSC)。使用布尔分析方法,我们预测,超线性和亚线性突触求和可以允许单个神经元实现一种类型的LNSC,特征绑定问题(FBP),它不需要与异或功能(XOR)相反的抑制。值得注意的是,当分散的突触激活产生增加的体细胞尖峰输出时,亚线性树突状操作使LNSC成为可能。然而,尚未描述散射敏感神经元计算的实验演示。利用谷氨酸在小脑分子层中间神经元上的释放,我们表明,树突的分散突触样激活比簇突触激活引起更大的复合EPSP,产生更高的输出尖峰概率。此外,我们还证明了单个中间神经元确实可以实现FBP。使用生物物理模型来探索神经元可能被期望实现FBP的条件,我们确定次线性求和是必要的,但不是足够的。其他参数,如相对亚线性,EPSP大小,相对于动作电位阈值的去极化幅度,和电压波动都影响FBP是否可以执行。由于亚线性突触求和是被动树突的一个属性,我们期望许多不同的神经元类型可以实现LNSC。
    Theory predicts that nonlinear summation of synaptic potentials within dendrites allows neurons to perform linearly non-separable computations (LNSCs). Using Boolean analysis approaches, we predicted that both supralinear and sublinear synaptic summation could allow single neurons to implement a type of LNSC, the feature binding problem (FBP), which does not require inhibition contrary to the exclusive-or function (XOR). Notably, sublinear dendritic operations enable LNSCs when scattered synaptic activation generates increased somatic spike output. However, experimental demonstrations of scatter-sensitive neuronal computations have not yet been described. Using glutamate uncaging onto cerebellar molecular layer interneurons, we show that scattered synaptic-like activation of dendrites evoked larger compound EPSPs than clustered synaptic activation, generating a higher output spiking probability. Moreover, we also demonstrate that single interneurons can indeed implement the FBP. Using a biophysical model to explore the conditions in which a neuron might be expected to implement the FBP, we establish that sublinear summation is necessary but not sufficient. Other parameters such as the relative sublinearity, the EPSP size, depolarization amplitude relative to action potential threshold, and voltage fluctuations all influence whether the FBP can be performed. Since sublinear synaptic summation is a property of passive dendrites, we expect that many different neuron types can implement LNSCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    运动神经元和脊髓运动电路的过度兴奋性已经在肌萎缩性侧索硬化(ALS)的早期阶段被广泛报道。神经元上兴奋性与抑制性输入的相对量的变化(E:I突触比),可能通过突触形成的发育转变有利于兴奋性传递,可能是病理性兴奋过度的基础。鉴于星形胶质细胞在早期突触发生中起主要作用,并且与ALS的发病机制有关,它们对涉及突触失衡和随后的过度兴奋的疾病机制的潜在贡献也引起了极大的兴趣.为了评估ALS中的E:I比率,我们利用了一种新型的原发性脊髓神经元/星形胶质细胞共培养系统,来自新生小鼠,在体外形成突触。使用多个ALS小鼠模型,我们发现星形胶质细胞或神经元基因型的组合没有产生使用突触前和突触后解剖标记评估的E:I突触比率的改变。同样,我们观察到ephrin-B1是一种主要的接触依赖性星形胶质细胞突触蛋白,ALS原代星形胶质细胞不差异表达。除此之外,对年轻(出生后第16-19天)ALS小鼠的腰脊髓的整个灰质的E:I比率的分析显示与对照相比没有差异。最后,对携带致病性C9orf72六核苷酸重复扩增的人iPSC衍生的运动神经元和星形胶质细胞的共培养物进行的分析显示,没有证据表明存在兴奋性与抑制性突触形成的倾向.因此,我们得出结论,利用多个ALS模型,我们没有观察到兴奋性与抑制性突触的相对丰度的显着变化,如果突触输入的失衡导致早期兴奋过度,这是可以预期的。
    Hyperexcitability of motor neurons and spinal cord motor circuitry has been widely reported in the early stages of Amyotrophic Lateral Sclerosis (ALS). Changes in the relative amount of excitatory to inhibitory inputs onto a neuron (E:I synaptic ratio), possibly through a developmental shift in synapse formation in favour of excitatory transmission, could underlie pathological hyperexcitability. Given that astrocytes play a major role in early synaptogenesis and are implicated in ALS pathogenesis, their potential contribution to disease mechanisms involving synaptic imbalances and subsequent hyperexcitability is also of great interest. In order to assess E:I ratios in ALS, we utilised a novel primary spinal neuron / astrocyte co-culture system, derived from neonatal mice, in which synapses are formed in vitro. Using multiple ALS mouse models we found that no combination of astrocyte or neuron genotype produced alterations in E:I synaptic ratios assessed using pre- and post-synaptic anatomical markers. Similarly, we observed that ephrin-B1, a major contact-dependent astrocytic synaptogenic protein, was not differentially expressed by ALS primary astrocytes. Further to this, analysis of E:I ratios across the entire grey matter of the lumbar spinal cord in young (post-natal day 16-19) ALS mice revealed no differences versus controls. Finally, analysis in co-cultures of human iPSC-derived motor neurons and astrocytes harbouring the pathogenic C9orf72 hexanucleotide repeat expansion showed no evidence of a bias toward excitatory versus inhibitory synapse formation. We therefore conclude, utilising multiple ALS models, that we do not observe significant changes in the relative abundance of excitatory versus inhibitory synapses as would be expected if imbalances in synaptic inputs contribute to early hyperexcitability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本研究的目的是评估罗格列酮(RSG)或吡格列酮(POG)对突触可塑性的影响,神经元凋亡,脑源性神经营养因子(BDNF),和幼年甲状腺功能减退大鼠海马中一氧化氮(NO)代谢产物。将动物分为四组:对照组;丙基硫氧嘧啶(PTU),在饮用水中加入0.05%剂量42天;PTU-POG;和PTU-RSG。通过IP注射施用POG(20mg/kg)和RSG(4mg/kg)。我们使用Schaffer侧支途径的高频刺激,在海马的玉米1区域进行了长期增强(LTP)。然后,收集海马组织测定BDNF和NO水平及细胞凋亡程度。与对照相比,PTU施用降低了fEPSP的斜率(10-90%)和振幅。RSG或POG的注入增加了斜率,坡度(10-90%),与PTU组相比,PTU‑POG或PTU‑RSG组中的fEPSP的振幅。PTU组海马中TUNEL阳性神经元和NO代谢产物高于对照组。RSG或POG增加PTU-POG或PTU-RSG组中的BDNF含量。用POG或RSG处理大鼠减少PTU-POG或PTU-RSG组海马中的凋亡神经元和NO代谢产物,分别,与PTU组相比。这项研究的结果表明,POG或RSG使LTP受损正常化,神经元凋亡,改善幼年甲状腺功能减退大鼠海马组织BDNF含量。
    The aim of the present study was to evaluate the effect of rosiglitazone (RSG) or pioglitazone (POG) on the synaptic plasticity, neuronal apoptosis, brain-derived neurotrophic factor (BDNF), and nitric oxide (NO) metabolites in the hippocampus of juvenile hypothyroid rats. The animals were divided into four groups: control; propylthiouracil (PTU), 0.05% dose in drinking water for 42 days; PTU-POG; and PTU-RSG. The POG (20 mg/kg) and the RSG (4 mg/kg) were administered by IP injection. We conducted long‑term potentiation (LTP) in the cornu ammonis 1 area of the hippocampus using high‑frequency stimulation of the Schaffer collateral pathway. Then, the hippocampal tissues were collected to determine BDNF and NO levels and the degree of apoptosis. PTU administration decreased the slope (10-90%) and amplitude of the fEPSPs compared to control. Injection of RSG or POG increased the slope, slope (10-90%), and amplitude of the fEPSP in the PTU‑POG or PTU‑RSG groups compared to the PTU group. TUNEL‑positive neurons and NO metabolites in the hippocampus of the PTU group were higher than those of the control group. RSG or POG increased BDNF content in PTU-POG or PTU-RSG groups. Treatment of the rats with POG or RSG decreased apoptotic neurons and NO metabolites in the hippocampus of PTU-POG or PTU-RSG groups, respectively, compared to the PTU group. This study\'s results revealed that POG or RSG normalized LTP impairment, neuronal apoptosis, and improved BDNF content in the hippocampal tissue of juvenile hypothyroid rats.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    内耳内毛细胞(IHC)和I型螺旋神经节神经元(SGNS)之间的带状突触因噪声损伤和衰老而受损,导致“突触病”和听力损失。已开发出新生儿Corti神经支配器官和新引入的SGN的共培养,以寻找改善IHC突触再生的策略。但是再生突触生理正常的证据缺失了。本研究利用IHC光遗传学刺激和SGN记录,证明这一点,当Corti的P3-5去神经支配的器官与SGN共培养时,新形成的IHC/SGN突触确实有功能,表现出谷氨酸能兴奋性突触后电流。当在P10-11使用较老的Corti器官时,通过去卷积探测的突触活动显示出更成熟的释放特性,更接近对编码声音信号至关重要的IHC突触传输的专门模式。在这里开发了新形成的IHC突触的功能评估,提供了一个强大的工具来测试改善突触再生的方法。
    Ribbon synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs) in the inner ear are damaged by noise trauma and with aging, causing \"synaptopathy\" and hearing loss. Cocultures of neonatal denervated organs of Corti and newly introduced SGNs have been developed to find strategies for improving IHC synapse regeneration, but evidence of the physiological normality of regenerated synapses is missing. This study utilizes IHC optogenetic stimulation and SGN recordings, showing that, when P3-5 denervated organs of Corti are cocultured with SGNs, newly formed IHC/SGN synapses are indeed functional, exhibiting glutamatergic excitatory postsynaptic currents. When using older organs of Corti at P10-11, synaptic activity probed by deconvolution showed more mature release properties, closer to the specialized mode of IHC synaptic transmission crucial for coding the sound signal. This functional assessment of newly formed IHC synapses developed here, provides a powerful tool for testing approaches to improve synapse regeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:从童年到成年的过渡,或者青春期,一个发展阶段,以心理社会和生物学变化为特征。伏隔核(NAc),由核心(NAcC)和外壳(NAcSh)组成的纹状体大脑区域,与冒险行为有关,并牵涉到寻求奖励和评估。NAc中的大多数神经元是表达多巴胺D1受体(D1R+)和/或多巴胺D2受体(D2R+)的中刺神经元(MSN)。多巴胺能和谷氨酸能系统的变化发生在青春期,并在NAc中收敛。虽然先前有关于NAc两个分支中膜兴奋性和突触谷氨酸传递的性别差异的研究,根据我们的知识,没有人指定青春期前和青春期中期小鼠的NAcShD1R+MSN。
    方法:从B6制备含有NAc的矢状脑切片。Cg-Tg(Drd1a-tdTomato)6Calak/J小鼠,来自出生后第21-25天和35-47天,代表青春期前和青春期中期,分别。从NAcShD1R+MSN收集全细胞电生理记录,以膜电压对电流注入的反应形式,评估膜特性和动作电位波形特征,和自发兴奋性突触后电流(sEPSCs)以评估谷氨酸能突触活动。
    结果:相对于青春期前男性,青春期前女性NAcShD1R+MSNs表现出较少的超极化静息膜电位,增加输入电阻,和较小的动作电位后超极化振幅。在青春期中期,女性的输入阻力降低和动作电位持续时间缩短是唯一观察到的性别差异。
    结论:综合来看,我们的结果表明,NAcShD1R+MSN小鼠在青春期前表现出膜特性和AP波形的性别差异,这总体上表明女性细胞兴奋性增加,并提示甘氨酸受体可能存在性别差异,向内整流钾通道,和大电导电压门控钾通道。这些差异似乎不会持续到青春期中期,当观察到性别与青春期前相反地影响输入阻力和AP波形时,提示电压门控钾通道存在差异。
    青春期标志着身心发生实质性变化的时期,大脑结构的改变会影响行为。许多青少年表现出的一种行为变化是冒险的趋势增加,尤其是男性。虽然承担风险可以带来积极的结果,比如学习新技能,它也可能导致鲁莽的行为,可能导致负面结果。伏隔核,与冒险和奖励感知相关的大脑区域,在从童年到成年的过渡过程中没有得到很好的研究,特别是在性别差异方面。为了填补这个理解上的空白,这项研究检查了青春期前和青春期中期雄性和雌性小鼠伏隔核中一种特定类型的脑细胞。我们测量了这些细胞的电特性,并评估了它们如何对其电状态的操纵做出反应。我们还测量了兴奋性电信息从其他大脑区域发送到这些细胞的数量和频率。我们的结果表明,在青春期前的女性中,这些脑细胞对它们的电状态的操纵更加兴奋,并且与年龄相同的女性相比,青春期中期男性的这些脑细胞可能需要更长的时间来将信息传达给其他大脑区域。了解脑细胞交流的这些复杂性,可以揭示从童年到成年过渡期间潜在的性别特异性漏洞。
    BACKGROUND: The transition from childhood to adulthood, or adolescence, a developmental stage, is characterized by psychosocial and biological changes. The nucleus accumbens (NAc), a striatal brain region composed of the core (NAcC) and shell (NAcSh), has been linked to risk-taking behavior and implicated in reward seeking and evaluation. Most neurons in the NAc are medium spiny neurons (MSNs) that express dopamine D1 receptors (D1R +) and/or dopamine D2 receptors (D2R +). Changes in dopaminergic and glutamatergic systems occur during adolescence and converge in the NAc. While there are previous investigations into sex differences in membrane excitability and synaptic glutamate transmission in both subdivisions of the NAc, to our knowledge, none have specified NAcSh D1R + MSNs from mice during pre- and mid-adolescence.
    METHODS: Sagittal brain slices containing the NAc were prepared from B6.Cg-Tg(Drd1a-tdTomato)6Calak/J mice of both sexes from postnatal days 21-25 and 35-47, representing pre- and mid-adolescence, respectively. Whole-cell electrophysiology recordings were collected from NAcSh D1R + MSNs in the form of membrane-voltage responses to current injections, to assess membrane properties and action potential waveform characteristics, and spontaneous excitatory postsynaptic currents (sEPSCs) to assess glutamatergic synaptic activity.
    RESULTS: Relative to pre-adolescent males, pre-adolescent female NAcSh D1R + MSNs exhibited a less hyperpolarized resting membrane potential, increased input resistance, and smaller action potential afterhyperpolarization amplitudes. During mid-adolescence, decreased input resistance and a shorter action potential duration in females were the only sex differences observed.
    CONCLUSIONS: Taken together, our results indicate that NAcSh D1R + MSNs in mice exhibit sex differences in membrane properties and AP waveform during pre-adolescence that are overall indicative of increased cellular excitability in females and are suggestive of possible sex differences in glycine receptors, inwardly-rectifying potassium channels, and large conductance voltage-gated potassium channels. These differences do not appear to persist into mid-adolescence, when sex was observed to affect input resistance oppositely to that of pre-adolescence and AP waveform in a manner suggestive of differences in voltage-gated potassium channels.
    Adolescence marks a period of substantial changes in both the mind and body, where alterations in the brain’s structure can influence behavior. One change in behavior exhibited by many adolescents is an increased tendency to take risks, particularly in males. While taking risks can result in positive outcomes, like learning new skills, it can also lead to reckless behaviors that may result in negative outcomes. The nucleus accumbens, a brain region tied to risk-taking and reward perception, is not well-studied during the transition from childhood to adulthood, particularly in terms of sex differences. To fill this gap in understanding, this study examined a specific type of brain cell in the nucleus accumbens of pre- and mid-adolescent male and female mice. We measured the electrical properties of these cells and assessed how they responded to manipulation of their electrical state. We also measured how much and how often excitatory electrical information is sent to these cells from other brain regions. Our results suggest that in pre-adolescent females, these brain cells are more excited by manipulations of their electrical state and that these brain cells in mid-adolescent males may take longer to communicate information to other brain regions than in similarly aged females. Understanding these intricacies of brain cell communication sheds light on potential sex-specific vulnerabilities during the transition from childhood to adulthood.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    出生压力是精神疾病的危险因素,与压力激素精氨酸加压素(AVP)过度释放到循环和大脑中有关。在围产期海马中,AVP激活GABA能中间神经元,导致自发网络事件的抑制,并表明AVP在出生期间对皮质网络的保护功能。然而,AVP在皮层下网络发育中的作用尚不清楚.在这里,我们测试了AVP对背中缝核(DRN)5-羟色胺(5-HT,雄性和雌性新生大鼠的血清素)系统,因为早期5-HT稳态对于大脑皮层区域的发育和情绪行为至关重要。我们表明AVP在新生儿DRN中具有强烈的兴奋性:它在体外通过V1A受体增加了5-HT神经元的兴奋性突触输入,并通过其对谷氨酸能突触传递的影响和对兴奋性的直接影响来促进其动作电位放电这些神经元。此外,我们确定了新生儿体内5-HT神经元的两种主要放电模式,补品规则放电和规则尖峰序列的低频振荡,并证实这些神经元在体内也被AVP激活。最后,我们表明,新生儿DRN中稀疏的血管加压素能神经支配仅起源于杏仁核内侧和终末纹床核的细胞群。出生应激期间AVP对新生儿5-HT系统的过度激活可能会影响其自身功能发育并影响皮质靶区的成熟。这可能会增加以后患精神疾病的风险。
    Birth stress is a risk factor for psychiatric disorders and associated with exaggerated release of the stress hormone arginine vasopressin (AVP) into circulation and in the brain. In perinatal hippocampus, AVP activates GABAergic interneurons which leads to suppression of spontaneous network events and suggests a protective function of AVP on cortical networks during birth. However, the role of AVP in developing subcortical networks is not known. Here we tested the effect of AVP on the dorsal raphe nucleus (DRN) 5-hydroxytryptamine (5-HT, serotonin) system in male and female neonatal rats, since early 5-HT homeostasis is critical for the development of cortical brain regions and emotional behaviors. We show that AVP is strongly excitatory in neonatal DRN: it increases excitatory synaptic inputs of 5-HT neurons via V1A receptors in vitro and promotes their action potential firing through a combination of its effect on glutamatergic synaptic transmission and a direct effect on the excitability of these neurons. Furthermore, we identified two major firing patterns of neonatal 5-HT neurons in vivo, tonic regular firing and low frequency oscillations of regular spike trains and confirmed that these neurons are also activated by AVP in vivo. Finally, we show that the sparse vasopressinergic innervation in neonatal DRN originates exclusively from cell groups in medial amygdala and bed nucleus of stria terminalis. Hyperactivation of the neonatal 5-HT system by AVP during birth stress may impact its own functional development and affect the maturation of cortical target regions, which may increase the risk for psychiatric conditions later on.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经元用于调节阶段性和强直抑制的功效及其对突触可塑性和行为的影响的机制尚未完全了解。唇裂和腭跨膜蛋白1(Clptm1)是一种跨膜蛋白,与多个γ-氨基丁酸A型受体(GABAAR)亚基相互作用,将它们捕获在内质网和高尔基网络中。过表达和敲低研究表明,Clptm1调节培养的海马神经元中GABAAR介导的阶段性抑制和强直抑制以及活性诱导的抑制性突触稳态。探讨Clptm1在体内对GABAAR的调控作用,我们产生了Clptm1基因敲除小鼠。这里,我们表明,Clptm1的基因敲除在雄性和雌性杂合小鼠中均提高了阶段性和强直性抑制传递。尽管基础兴奋性突触传递没有受到影响,Clptm1单倍体功能不全显著阻断高频刺激诱导的海马CA3-CA1突触长时程增强。在海马体依赖的上下文恐惧条件行为任务中,雄性和雌性Clptm1杂合子敲除小鼠均表现出上下文恐惧记忆障碍。此外,通过应用L-655,708(突触外GABAARα5亚基的负变构调节剂)挽救了LTP和上下文恐惧记忆。这些结果表明,Clptm1的单倍体功能不足通过抑制神经传递的升高而改变突触传递和可塑性,从而导致认知缺陷。补品抑制起主要作用。意义陈述CLPTM1基因最初被鉴定为在唇腭裂家族中被破坏。在分子水平上,Clptm1与多个GABAA受体亚基相互作用以限制其表面表达。这里,我们产生了Clptm1基因敲除小鼠,以揭示其在体内的功能。Clptm1不仅限制了海马的阶段性抑制和强直传递,它是兴奋性突触可塑性和海马依赖性认知功能所必需的。突触外GABAA受体的调节剂挽救了Clptm1杂合子敲除小鼠的可塑性和行为缺陷,表明补品抑制的重要性。这些发现揭示了Clptm1在平衡抑制强度中的作用,并提高了Clptm1功能破坏可能导致神经系统疾病中的突触和认知缺陷的可能性。
    The mechanisms utilized by neurons to regulate the efficacy of phasic and tonic inhibition and their impacts on synaptic plasticity and behavior are incompletely understood. Cleft lip and palate transmembrane protein 1 (Clptm1) is a membrane-spanning protein that interacts with multiple γ-aminobutyric acid type A receptor (GABAAR) subunits, trapping them in the endoplasmic reticulum and Golgi network. Overexpression and knock-down studies suggest that Clptm1 modulates GABAAR-mediated phasic inhibition and tonic inhibition as well as activity-induced inhibitory synaptic homeostasis in cultured hippocampal neurons. To investigate the role of Clptm1 in the modulation of GABAARs in vivo, we generated Clptm1 knock-out (KO) mice. Here, we show that genetic KO of Clptm1 elevated phasic and tonic inhibitory transmission in both male and female heterozygous mice. Although basal excitatory synaptic transmission was not affected, Clptm1 haploinsufficiency significantly blocked high-frequency stimulation-induced long-term potentiation (LTP) in hippocampal CA3→CA1 synapses. In the hippocampus-dependent contextual fear-conditioning behavior task, both male and female Clptm1 heterozygous KO mice exhibited impairment in contextual fear memory. In addition, LTP and contextual fear memory were rescued by application of L-655,708, a negative allosteric modulator of the extrasynaptic GABAAR α5 subunit. These results suggest that haploinsufficiency of Clptm1 contributes to cognitive deficits through altered synaptic transmission and plasticity by elevation of inhibitory neurotransmission, with tonic inhibition playing a major role.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在新颖的对象识别(NOR)测试中,尼古丁已被证明可以通过激活内侧前额叶皮层(mPFC)中的兴奋性神经元来增强对象识别记忆。然而,尼古丁诱导的mPFC神经元激活和由此产生的记忆增强的确切神经元机制仍然知之甚少。为了解决这个问题,我们在雄性C57BL/6J小鼠中进行了脑片电生理学和NOR测试。mPFC中V层锥体神经元的全细胞膜片钳记录显示,尼古丁增加了诱发的兴奋性突触后电位(eEPSP)的总和,并且这种作用被N-[3,5-双(三氟甲基)苯基]-N'-[2,4-二溴-6-(2H-四唑-5-基)苯基]脲(NS5806)抑制,电压依赖性钾(Kv)4.3通道激活剂。根据这些发现,在NOR测试中,mPFC内输注NS5806抑制全身给予尼古丁诱导的记忆增强.此外,miRNA介导的mPFC锥体神经元中Kv4.3通道的敲减增强了物体识别记忆。此外,发现通过mPFC内输注4-氨基吡啶抑制A型Kv通道可增强物体识别记忆,而之前的mPFCNS5806内输注消除了这种作用。这些结果表明,尼古丁通过抑制mPFCV层锥体神经元中的Kv4.3通道来增加eEPSP的总和,从而增强了物体识别记忆。
    Nicotine has been shown to enhance object recognition memory in the novel object recognition (NOR) test by activating excitatory neurons in the medial prefrontal cortex (mPFC). However, the exact neuronal mechanisms underlying the nicotine-induced activation of mPFC neurons and the resultant memory enhancement remain poorly understood. To address this issue, we performed brain-slice electrophysiology and the NOR test in male C57BL/6J mice. Whole-cell patch-clamp recordings from layer V pyramidal neurons in the mPFC revealed that nicotine augments the summation of evoked excitatory postsynaptic potentials (eEPSPs) and that this effect was suppressed by N-[3,5-Bis(trifluoromethyl)phenyl]-N\'-[2,4-dibromo-6-(2H-tetrazol-5-yl)phenyl]urea (NS5806), a voltage-dependent potassium (Kv) 4.3 channel activator. In line with these findings, intra-mPFC infusion of NS5806 suppressed systemically administered nicotine-induced memory enhancement in the NOR test. Additionally, miRNA-mediated knockdown of Kv4.3 channels in mPFC pyramidal neurons enhanced object recognition memory. Furthermore, inhibition of A-type Kv channels by intra-mPFC infusion of 4-aminopyridine was found to enhance object recognition memory, while this effect was abrogated by prior intra-mPFC NS5806 infusion. These results suggest that nicotine augments the summation of eEPSPs via the inhibition of Kv4.3 channels in mPFC layer V pyramidal neurons, resulting in the enhancement of object recognition memory.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    N-甲基-D-天冬氨酸受体(NMDARs),由GRIN基因编码,离子型谷氨酸受体在突触传递中起关键作用,可塑性,和突触发育。基因组序列分析已经确定了神经发育障碍患者的GRIN基因变异,但是潜在的疾病机制还没有很好的理解。这里,我们已经创建并评估了携带错义变体Grin2bL825V的转基因小鼠系,对应于在患有智力障碍(ID)和自闭症谱系障碍(ASD)的患者中发现的编码GluN2B(L825V)的从头GRIN2B变体。我们使用表达重组受体的HEK293T细胞和由杂合Grin2bL825V/+(L825V/+)和野生型Grin2b+/+(+/+)雄性和雌性小鼠制备的原代海马神经元来评估变体的功能影响。与+/+小鼠相比,从L825V/+制备的神经元中的全细胞NMDAR电流降低。NMDAR介导的兴奋性突触后电流(NMDAR-eEPSC)的峰值幅度没有改变,但是与+/+神经元相比,L825V/+神经元中的NMDAR-eEPSCs的失活更快,并且对GluN2B选择性拮抗剂艾芬普地尔的敏感性较低。一起,这些结果表明GluN2B亚基对L825V/+小鼠海马神经元突触NMDAR电流的功能贡献降低。对GluN2B(L825V)亚基表面表达和突触定位的分析显示与野生型GluN2B相比没有差异。对男女小鼠的行为测试显示出活动不足,焦虑,L825V/+菌株的感觉运动门控受损,尤其影响男性,以及认知症状。杂合L825V/小鼠提供了GRIN2B相关ID/ASD的临床相关模型,我们的结果表明突触水平的功能变化可能有助于神经发育病理学。意义陈述N-甲基-D-天冬氨酸受体(NMDARs)亚基的基因变异,离子型谷氨酸受体的亚型,与神经发育障碍有关。在这里,我们已经产生了一个从头错义GRIN2B基因变体的转基因小鼠模型,在患有智力残疾和自闭症的患者中发现,在NMDARGluN2B亚基中引入单个氨基酸取代(L825V)。含有GluN2B(L825V)亚基的二异聚体和三异聚体NMDAR具有降低的通道开放概率。来自杂合子L825V/+小鼠的神经元中的突触NMDAR电流具有加速的失活和降低的ifenprodil敏感性,提示GluN2B功能的突触丧失。L825V/+小鼠显示焦虑增加,感觉运动门控受损,和认知缺陷,与患者症状一致。我们的研究描述了GRIN2B相关神经发育病理学的临床相关小鼠模型。
    N-Methyl-d-aspartate receptors (NMDARs), encoded by GRIN genes, are ionotropic glutamate receptors playing a critical role in synaptic transmission, plasticity, and synapse development. Genome sequence analyses have identified variants in GRIN genes in patients with neurodevelopmental disorders, but the underlying disease mechanisms are not well understood. Here, we have created and evaluated a transgenic mouse line carrying a missense variant Grin2bL825V , corresponding to a de novo GRIN2B variant encoding GluN2B(L825V) found in a patient with intellectual disability (ID) and autism spectrum disorder (ASD). We used HEK293T cells expressing recombinant receptors and primary hippocampal neurons prepared from heterozygous Grin2bL825V/+ (L825V/+) and wild-type (WT) Grin2b+/+ (+/+) male and female mice to assess the functional impact of the variant. Whole-cell NMDAR currents were reduced in neurons from L825V/+ compared with +/+ mice. The peak amplitude of NMDAR-mediated evoked excitatory postsynaptic currents (NMDAR-eEPSCs) was unchanged, but NMDAR-eEPSCs in L825V/+ neurons had faster deactivation compared with +/+ neurons and were less sensitive to a GluN2B-selective antagonist ifenprodil. Together, these results suggest a decreased functional contribution of GluN2B subunits to synaptic NMDAR currents in hippocampal neurons from L825V/+ mice. The analysis of the GluN2B(L825V) subunit surface expression and synaptic localization revealed no differences compared with WT GluN2B. Behavioral testing of mice of both sexes demonstrated hypoactivity, anxiety, and impaired sensorimotor gating in the L825V/+ strain, particularly affecting males, as well as cognitive symptoms. The heterozygous L825V/+ mouse offers a clinically relevant model of GRIN2B-related ID/ASD, and our results suggest synaptic-level functional changes that may contribute to neurodevelopmental pathology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号