enzymes

  • 文章类型: Journal Article
    环境中的微塑料(MPs尺寸<5mm)上的微生物附着和生物膜形成受到越来越多的关注。然而,微生物功能及其对环境中MPs的性质和行为的影响的知识有限。在这项研究中,探索了质体中的微生物群落,以了解微生物生态学及其对水生生态系统的影响。使用16S和内部转录间隔区(ITS)基因的扩增子测序,我们发现了MPs样本中细菌和真菌群落的组成和多样性(纤维,电影,泡沫,andfragment),地表水,底部沉积物,和日本两个对比鲜明的沿海地区的沿海沙子。根据样品类型(MPs,水,沉积物,和沙子)和研究地点。尽管在研究地点的MP片段和泡沫中确定了相对较高的细菌和真菌基因计数,根据MPs的形态类型,微生物群落组成没有显着差异。鉴于碳氢化合物降解群落的定殖和MP上病原体的存在,微生物类群的复杂过程影响MP相关生物膜的特征,因此,议员的属性。这项研究强调了MP相关生物膜中微生物的代谢功能,这可能是揭示塑料碎片对全球生态系统真正影响的关键。
    Microbial attachment and biofilm formation on microplastics (MPs <5 mm in size) in the environment have received growing attention. However, there is limited knowledge of microbial function and their effect on the properties and behavior of MPs in the environment. In this study, microbial communities in the plastisphere were explored to understand microbial ecology as well as their impact on aquatic ecosystems. Using the amplicon sequencing of 16S and internal transcribed spacer (ITS) genes, we uncovered the composition and diversity of bacterial and fungal communities in samples of MPs (fiber, film, foam, and fragment), surface water, bottom sediment, and coastal sand in two contrasting coastal areas of Japan. Differences in microbial diversity and taxonomic composition were detected depending on sample type (MPs, water, sediment, and sand) and the research site. Although relatively higher bacterial and fungal gene counts were determined in MP fragments and foams from the research sites, there were no significant differences in microbial community composition depending on the morphotypes of MPs. Given the colonization by hydrocarbon-degrading communities and the presence of pathogens on MPs, the complex processes of microbial taxa influence the characteristics of MP-associated biofilms, and thus, the properties of MPs. This study highlights the metabolic functions of microbes in MP-associated biofilms, which could be key to uncovering the true impact of plastic debris on the global ecosystem.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    外膜囊泡(OMV)很小,球形,从革兰氏阴性细菌释放的纳米级蛋白脂质体在细胞防御中起重要作用,发病机制,和信号,在其他功能中。OMV的功能可以通过为生物医学和生化应用开发的工程来增强。这里,我们描述了使用工程分子系统将酶定向包装到大肠杆菌的细菌OMV中的方法,例如将蛋白质定位到囊泡的内表面或外表面。此外,我们详细介绍了OMV的一些修饰策略,如冻干和表面活性剂缀合,当暴露于非生理条件如高温时,能够保护包装酶的活性。有机溶剂,和反复冷冻/解冻,否则会导致游离酶活性的大量损失。
    Outer membrane vesicles (OMVs) are small, spherical, nanoscale proteoliposomes released from Gram-negative bacteria that play an important role in cellular defense, pathogenesis, and signaling, among other functions. The functionality of OMVs can be enhanced by engineering developed for biomedical and biochemical applications. Here, we describe methods for directed packaging of enzymes into bacterial OMVs of E. coli using engineered molecular systems, such as localizing proteins to the inner or outer surface of the vesicle. Additionally, we detail some modification strategies for OMVs such as lyophilization and surfactant conjugation that enable the protection of activity of the packaged enzyme when exposed to non-physiological conditions such as elevated temperature, organic solvents, and repeated freeze/thaw that otherwise lead to a substantial loss in the activity of the free enzyme.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多功能纳米材料的模拟酶性质提出了一类新的材料,分类为纳米酶,ornanozymes.它们是通过功能化纳米材料以产生可以模拟酶样功能的活性位点而制造的人工酶。材料从金属和氧化物延伸到具有固有的类酶性质的无机纳米颗粒。成本高,稳定性低,分离的困难,可重用性,和天然酶的储存问题可以通过纳米酶很好地解决。自2007年以来,已有100多种纳米酶被报道模拟过氧化物酶等酶,氧化酶,过氧化氢酶,蛋白酶,核酸酶,水解酶,超氧化物歧化酶,等。此外,几种纳米酶也可以表现出多酶特性。据报道,通过利用这种化学物质,光学,和由纳米酶提供的生理化学性质。这篇综述的重点是报道了从各种材料制造的纳米酶,以及它们的酶模拟活性,涉及调整材料,如金属纳米颗粒(NP),金属氧化物NP,金属有机框架(MOF),共价有机骨架(COF),和碳基NP。此外,详细讨论了纳米酶在生物医学研究中的各种应用。
    The enzyme-mimicking nature of versatile nanomaterials proposes a new class of materials categorized as nano-enzymes, ornanozymes. They are artificial enzymes fabricated by functionalizing nanomaterials to generate active sites that can mimic enzyme-like functions. Materials extend from metals and oxides to inorganic nanoparticles possessing intrinsic enzyme-like properties. High cost, low stability, difficulty in separation, reusability, and storage issues of natural enzymes can be well addressed by nanozymes. Since 2007, more than 100 nanozymes have been reported that mimic enzymes like peroxidase, oxidase, catalase, protease, nuclease, hydrolase, superoxide dismutase, etc. In addition, several nanozymes can also exhibit multi-enzyme properties. Vast applications have been reported by exploiting the chemical, optical, and physiochemical properties offered by nanozymes. This review focuses on the reported nanozymes fabricated from a variety of materials along with their enzyme-mimicking activity involving tuning of materials such as metal nanoparticles (NPs), metal-oxide NPs, metal-organic framework (MOF), covalent organic framework (COF), and carbon-based NPs. Furthermore, diverse applications of nanozymes in biomedical research are discussed in detail.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The identification of enzyme functions plays a crucial role in understanding the mechanisms of biological activities and advancing the development of life sciences. However, existing enzyme EC number prediction methods did not fully utilize protein sequence information and still had shortcomings in identification accuracy. To address this issue, we proposed an EC number prediction network using hierarchical features and global features (ECPN-HFGF). This method first utilized residual networks to extract generic features from protein sequences, and then employed hierarchical feature extraction modules and global feature extraction modules to further extract hierarchical and global features of protein sequences. Subsequently, the prediction results of both feature types were combined, and a multitask learning framework was utilized to achieve accurate prediction of enzyme EC numbers. Experimental results indicated that the ECPN-HFGF method performed best in the task of predicting EC numbers for protein sequences, achieving macro F1 and micro F1 scores of 95.5% and 99.0%, respectively. The ECPN-HFGF method effectively combined hierarchical and global features of protein sequences, allowing for rapid and accurate EC number prediction. Compared to current commonly used methods, this method offers significantly higher prediction accuracy, providing an efficient approach for the advancement of enzymology research and enzyme engineering applications.
    酶功能的识别对理解生命活动的机制、推进生命科学的发展有重要作用。然而现有的酶EC编号预测方法,并未充分利用蛋白质序列信息,在识别精度上仍有所不足。针对上述问题,本研究提出一种基于层级特征和全局特征的EC编号预测网络(EC number prediction network using hierarchical features and global features, ECPN-HFGF)。该方法首先通过残差网络提取蛋白质序列通用特征,并通过层级特征提取模块和全局特征提取模块进一步提取蛋白质序列的层级特征和全局特征,之后结合两种特征信息的预测结果,采用多任务学习框架,实现酶EC编号的精确预测。计算实验结果表明,ECPN-HFGF方法在蛋白质序列EC编号预测任务上性能最佳,宏观F1值和微观F1值分别达到95.5%和99.0%。ECPN-HFGF方法能有效结合蛋白质序列的层级特征和全局特征,快速准确预测蛋白质序列EC编号,比当前常用方法预测精确度更高,能够为酶学研究和酶工程应用的发展提供一种高效的思路和方法。.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    结核病(TB)是由结核分枝杆菌(Mtb)引起的严重致命疾病。世界卫生组织报告称,2022年与结核病相关的死亡人数估计为130万人。Mtb菌株的患病率不断上升,分类为多,广泛,极端,或者完全耐药,加上传统疗法的疗效下降,需要开发新的治疗方法。作为感染分枝杆菌的病毒。,分枝杆菌噬菌体可能是对抗和根除耐药结核病的一种策略.需要更多的探索来全面了解分枝杆菌噬菌体及其基因组结构,这可能为结核病的最终治疗铺平道路。这篇综述的重点是分枝杆菌噬菌体的特性,他们在诊断和治疗结核病方面的潜力,它们应用的好处和缺点,以及它们在人类健康中的用途。具体来说,我们总结了针对Mtb感染的分枝杆菌噬菌体的最新研究以及新开发的基于分枝杆菌噬菌体的诊断和治疗分枝杆菌引起的疾病的工具。
    Tuberculosis (TB) is a serious and fatal disease caused by Mycobacterium tuberculosis (Mtb). The World Health Organization reported an estimated 1.30 million TB-related deaths in 2022. The escalating prevalence of Mtb strains classified as being multi-, extensively, extremely, or totally drug resistant, coupled with the decreasing efficacies of conventional therapies, necessitates the development of novel treatments. As viruses that infect Mycobacterium spp., mycobacteriophages may represent a strategy to combat and eradicate drug-resistant TB. More exploration is needed to provide a comprehensive understanding of mycobacteriophages and their genome structure, which could pave the way toward a definitive treatment for TB. This review focuses on the properties of mycobacteriophages, their potential in diagnosing and treating TB, the benefits and drawbacks of their application, and their use in human health. Specifically, we summarize recent research on mycobacteriophages targeted against Mtb infection and newly developed mycobacteriophage-based tools to diagnose and treat diseases caused by Mycobacterium spp.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    酶促反应动力学是分析酶促反应机理和目标酶优化的核心,因此在生物制造和其他行业。酶周转数(Kcat)和米氏常数(Km),测量酶催化效率的关键动力学参数,对于分析酶促反应机理和目标酶的定向进化至关重要。Kcat和Km的实验测定在时间上是昂贵的,劳动,和成本。考虑kcat和Km之间的内在联系,进一步提高预测性能,我们提出了一个通用的预训练多任务深度学习模型,MPEK,同时预测这些参数,同时考虑pH值,温度,和有机信息。通过在相同的kcat和Km测试数据集上进行测试,MPEK表现出优于以前模型的预测性能。具体来说,MPEK实现了预测kcat的皮尔逊系数0.808,改善CA。与DLKcat和UniKP型号相比,分别为14.6%和7.6%,它实现了0.777的皮尔逊系数,用于预测Km,改善CA。与Kroll_model和UniKP型号相比,分别为34.9%和53.3%。更重要的是,MPEK能够揭示酶混杂性,并且对突变酶序列的轻微变化敏感。此外,在三个案例研究中,结果表明,MPEK具有辅助酶挖掘和定向进化的潜力。为了便于在计算机上评估酶的催化效率,我们已经建立了一个实现这个模型的网络服务器,可以在http://mathtc访问。nscc-tj.cn/mpek.
    Enzymatic reaction kinetics are central in analyzing enzymatic reaction mechanisms and target-enzyme optimization, and thus in biomanufacturing and other industries. The enzyme turnover number (kcat) and Michaelis constant (Km), key kinetic parameters for measuring enzyme catalytic efficiency, are crucial for analyzing enzymatic reaction mechanisms and the directed evolution of target enzymes. Experimental determination of kcat and Km is costly in terms of time, labor, and cost. To consider the intrinsic connection between kcat and Km and further improve the prediction performance, we propose a universal pretrained multitask deep learning model, MPEK, to predict these parameters simultaneously while considering pH, temperature, and organismal information. Through testing on the same kcat and Km test datasets, MPEK demonstrated superior prediction performance over the previous models. Specifically, MPEK achieved the Pearson coefficient of 0.808 for predicting kcat, improving ca. 14.6% and 7.6% compared to the DLKcat and UniKP models, and it achieved the Pearson coefficient of 0.777 for predicting Km, improving ca. 34.9% and 53.3% compared to the Kroll_model and UniKP models. More importantly, MPEK was able to reveal enzyme promiscuity and was sensitive to slight changes in the mutant enzyme sequence. In addition, in three case studies, it was shown that MPEK has the potential for assisted enzyme mining and directed evolution. To facilitate in silico evaluation of enzyme catalytic efficiency, we have established a web server implementing this model, which can be accessed at http://mathtc.nscc-tj.cn/mpek.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本研究旨在评估唑菌酯-一种常用于植物保护病原体(Amistar250SC)的杀菌剂-对土壤微生物群和酶的影响,以及植物的生长发育。实验室实验在三个分析期(30、60和90天)上对砂质粘土(pH-7.0)进行。以0.00(C)的剂量施用于土壤。0.110(F)和32.92(P)mgkg-1d.m.的土壤。其0.110mgkg-1剂量刺激了有机营养细菌和放线菌的增殖,但抑制了真菌的增殖。它还导致所有分析的微生物组的菌落发育指数(CD)增加和生态生理多样性指数(EP)降低。以32.92mgkg-1施用的偶氮酯减少了微生物的数量和EP,并增加了其CD。PP952051.1分枝杆菌菌株(P),PP952052.1巨大菌株(P)细菌,以及PP952052.1Kreatinophytonterorreum分离物(P)真菌在被唑菌酯污染的土壤中被鉴定,所有这些都可能对其效果表现出抵抗力。0.110mgkg-1的唑菌酯剂量刺激了所有酶的活性,而其32.92mgkg-1剂量抑制脱氢酶的活性,碱性磷酸酶,酸性磷酸酶,和脲酶,并刺激过氧化氢酶的活性。以0.110和32.92mgkg-1剂量添加到土壤中的分析杀菌剂均抑制了LepidiumsativumL.的种子萌发和芽的伸长,SinapsisalbaL.,和SorgumsaccharatumL.
    The present study was aimed at assessing the impact of azoxystrobin-a fungicide commonly used in plant protection against pathogens (Amistar 250 SC)-on the soil microbiota and enzymes, as well as plant growth and development. The laboratory experiment was conducted in three analytical terms (30, 60, and 90 days) on sandy clay (pH-7.0). Azoxystrobin was applied to soil in doses of 0.00 (C), 0.110 (F) and 32.92 (P) mg kg-1 d.m. of soil. Its 0.110 mg kg-1 dose stimulated the proliferation of organotrophic bacteria and actinobacteria but inhibited that of fungi. It also contributed to an increase in the colony development index (CD) and a decrease in the ecophysiological diversity index (EP) of all analyzed groups of microorganisms. Azoxystrobin applied at 32.92 mg kg-1 reduced the number and EP of microorganisms and increased their CD. PP952051.1 Bacillus mycoides strain (P), PP952052.1 Prestia megaterium strain (P) bacteria, as well as PP952052.1 Kreatinophyton terreum isolate (P) fungi were identified in the soil contaminated with azoxystrobin, all of which may exhibit resistance to its effects. The azoxystrobin dose of 0.110 mg kg-1 stimulated the activity of all enzymes, whereas its 32.92 mg kg-1 dose inhibited activities of dehydrogenases, alkaline phosphatase, acid phosphatase, and urease and stimulated the activity of catalase. The analyzed fungicide added to the soil at both 0.110 and 32.92 mg kg-1 doses inhibited seed germination and elongation of shoots of Lepidium sativum L., Sinapsis alba L., and Sorgum saccharatum L.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于能力的生理学和生物化学教育可以从创造性的将想象力叙事融入传统教学方法中受益。本文提出了一种使用笔和手掌类比来可视化酶功能理论的创新模型。笔(底物)必须紧贴在手掌(酶的活性位点)中才能发生催化,类似于诱导拟合理论。用拇指按压笔的顶部按钮表示将基材(笔尖在内侧)转换为产品(笔有小块,准备写作)。通过创造性地利用日常物品,学生可以增强他们对酶促反应的理解和参与。了解酶的工作原理可能很棘手,但是使用笔和手掌等日常物品的新教学方法有助于使其变得更容易。两个主要理论解释了这一点:诱导拟合模型和基底应变模型。为了想象这个,想象一支笔作为底物,你的手掌作为酶。当你用手指握住笔时(诱导配合),这就像酶改变形状来保持底物。用拇指按压笔的按钮(底物应变)就像酶施加压力使笔准备书写。这个简单的类比帮助学生更好地理解这些复杂的过程,使学习更有吸引力和可访问性。
    Competency-based physiology and biochemistry education can benefit from the creative integration of imaginative narratives into traditional teaching methods. This paper proposes an innovative model using a pen and palm analogy to visualize enzyme function theories. The pen (substrate) must fit snugly into the palm (enzyme\'s active site) for catalysis to occur, akin to induced-fit theory. Pressing the pen\'s top button with the thumb represents the strain needed to convert substrate (pen with nib inside) into product (pen with nub out, ready to write). By leveraging everyday objects creatively, students can enhance their understanding and engagement with enzymatic reactions.NEW & NOTEWORTHY Understanding how enzymes work can be tricky, but a new teaching method using everyday objects like pens and palms helps make it easier. Two main theories explain this: the induced-fit model and the substrate-strain model. To visualize this, imagine a pen as the substrate and your palm as the enzyme. When you hold the pen with your fingers (induced-fit), it\'s like the enzyme changing shape to hold the substrate. Pressing the pen\'s button with your thumb (substrate-strain) is like the enzyme applying pressure to make the pen ready to write. This simple analogy helps students better understand these complex processes, making learning more engaging and accessible.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    酶在多个行业的各种生物技术应用中充当关键组件。了解酶抑制揭示了某些化合物如何破坏生化途径,促进设计用于对抗疾病的靶向药物。另一方面,可逆抑制或活性的增强可以开启控制工业反应和提高从其自然环境中取出的天然酶的催化活性的新方法。在过去的二十年里,将酶固定在基于纳米材料的固体载体上已成为调节酶活性的特别有前途的方法。纳米材料不仅抑制酶,而且增强其性能,展示他们的多功能性。这一概念突出了利用纳米材料进行酶调节的重大进展,并讨论了利用这一现象开发复杂分子系统和下游应用的未来前景。
    Enzymes serve as pivotal components in various biotechnological applications across several industries. Understanding enzyme inhibition sheds light on how certain compounds disrupt biochemical pathways, facilitating the design of targeted drugs for combating diseases. On the other hand, reversible inhibition or enhancement of activity can unlock new ways of controlling industrial reactions and boosting the catalytic activity of native enzymes that are taken out of their natural environments. Over the last two decades, immobilizing enzymes on nanomaterial-based solid supports has emerged as an especially promising approach for tuning enzyme activity. Nanomaterials not only inhibit enzymes but also enhance their performance, showcasing their versatility.  This Concept highlights significant advancements in utilizing nanomaterials for enzyme modulation and discusses future prospects for leveraging this phenomenon in developing sophisticated molecular systems and downstream applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The stratum corneum (SC), the outermost epidermal layer, plays a pivotal role in skin barrier function. This review delves into the intricate process of protein degradation within the stratum corneum, elucidating the roles of specific enzymes, regulatory mechanisms and the consequent impact on various skin conditions. Protein degradation is a finely tuned process, orchestrated by a suite of proteolytic enzymes like kallikreins. These enzymes are responsible for the breakdown of corneodesmosomes and the orderly desquamation of corneocytes, a process essential for skin homeostasis. Another critical enzymatic process is the breakdown of proteins like filaggrin and the generation of amino acids and their derivatives, required in the physiological water-handling properties of the SC. Regulation of these proteolytic activities is complex, involving a balance between endogenous inhibitors and other factors like pH, hydration and environmental stressors. Dysregulation of protease activity is linked to a spectrum of skin conditions, ranging from xerosis to inflammatory diseases like atopic dermatitis and psoriasis. Aberrant protein degradation can lead to compromised skin barrier function, increased tissue water loss and heightened susceptibility to infections and allergens. Understanding the factors affecting protein degradation can inform the development of targeted skincare products. Advances in biochemistry and dermatology have paved the way for the search for active ingredients designed to modulate protease activity. Such innovations may offer promising therapeutic avenues for enhancing skin barrier function and treating skin disorders. This review underscores the significance of enzymatic protein degradation in the SC and its regulatory mechanisms. It provides insights into the pathophysiology of skin diseases and outlines the potential for novel skincare interventions. By bridging the gap between fundamental research and practical applications, this article aims to inspire further investigation for better understanding of skin physiology and innovation in the realm of skincare product development.
    La couche cornée (stratum corneum, SC), la couche épidermique la plus externe, joue un rôle essentiel dans la fonction de barrière cutanée. Cette revue se penche sur le processus complexe de dégradation des protéines au sein de la couche cornée, ce qui explique les rôles des enzymes spécifiques, les mécanismes de régulation et l\'impact qui en résulte sur diverses affections cutanées. La dégradation des protéines est un processus subtil, orchestré par une série d\'enzymes protéolytiques telles que les kallikréines. Ces enzymes sont responsables de la décomposition des cornéodesmosomes et de la desquamation ordonnée des cornéocytes, un processus essentiel à l\'homéostasie de la peau. Un autre processus enzymatique essentiel est la dégradation des protéines telles que la filaggrine et la génération d\'acides aminés et de leurs dérivés, nécessaires aux propriétés physiologiques de traitement de l\'eau de la SC. La régulation de ces activités protéolytiques est complexe, impliquant un équilibre entre les inhibiteurs endogènes et d\'autres facteurs tels que le pH, l\'hydratation et les facteurs de stress environnementaux. Le dérèglement de l\'activité de la protéase est lié à un spectre d\'affections cutanées, allant de la xérose à des maladies inflammatoires telles que la dermatite atopique et le psoriasis. Une dégradation aberrante des protéines peut compromettre la fonction de barrière cutanée, augmenter la perte d\'eau tissulaire et augmenter la sensibilité aux infections et aux allergènes. Comprendre les facteurs affectant la dégradation des protéines peut contribuer au développement de produits de soins de la peau ciblés. Les progrès en biochimie et en dermatologie ont ouvert la voie à la recherche de principes actifs conçus pour moduler l\'activité de la protéase. Ces innovations peuvent offrir des pistes thérapeutiques prometteuses pour améliorer la fonction de la barrière cutanée et traiter les troubles cutanés. Cette revue souligne l\'importance de la dégradation enzymatique des protéines dans la SC et ses mécanismes de régulation. Elle fournit des informations sur la physiopathologie des maladies cutanées et souligne le potentiel de nouvelles interventions pour soins de la peau. En comblant le fossé entre la recherche fondamentale et les applications pratiques, cet article vise à inspirer des recherches supplémentaires pour mieux comprendre la physiologie de la peau et l\'innovation dans le domaine du développement de produits de soins de la peau.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号