enteroendocrine cells

肠内分泌细胞
  • 文章类型: Journal Article
    背景:肠道L型肠内分泌细胞(EEC)是肠道化学感应细胞,通过营养消化和微生物发酵的腔内成分,响应G蛋白偶联受体(GPCR)的激活,分泌饱腹感激素GLP-1和PYY。G蛋白信号调节因子(RGS)蛋白是GPCR信号传导的负调节因子。RGS在EEC中的表达谱,它们在饱腹感激素分泌和肥胖中的潜在作用尚不清楚。
    方法:使用单细胞RNA测序(scRNA-Seq)在瘦和肥胖的天然结肠EEC中完成RGS的转录组学分析,和人类空肠EEC,数据来自公开的RNAseq数据集(GSE114853)。使用内窥镜检查期间获得的整个粘膜肠组织完成了RGS验证研究61例患者(n=42OB,n=19瘦);对患者的一部分餐后血浆进行了GLP-1和PYY测定。将离体人肠培养物和体外过表达RGS9的NCI-H716细胞与非选择性RGS抑制剂一起暴露于GLP-1促分泌素并测定GLP-1分泌。
    结果:结肠和空肠肠内分泌细胞的转录组学分析揭示了EEC中独特的RGS表达谱,并且进一步在GLP-1+L型EEC内。在肥胖症中,结肠EEC中的RGS表达谱改变。人肠道RGS9表达与BMI呈正相关,与餐后GLP-1和PYY呈负相关。人肠道培养物中的RGS抑制增加了GLP-1从EEC离体释放。过表达RGS9的NCI-H716细胞显示营养刺激的GLP-1分泌缺陷。
    结论:本研究介绍了RGS在人EEC中的表达谱,肥胖的改变,并提示RGS蛋白作为从肠EEC分泌的GLP-1和PYY调节剂的作用。
    背景:AA由NIH(C-SigP30DK84567,K23DK114460)支持,来自梅奥诊所生物医学发现中心的试点奖,以及与明尼苏达大学临床和转化科学研究所合作的梅奥临床中心临床和转化科学办公室的转化产品开发基金。
    BACKGROUND: Gut L-type enteroendocrine cells (EECs) are intestinal chemosensory cells that secrete satiety hormones GLP-1 and PYY in response to activation of G-protein coupled receptors (GPCRs) by luminal components of nutrient digestion and microbial fermentation. Regulator of G-protein Signaling (RGS) proteins are negative regulators of GPCR signaling. The expression profile of RGS in EECs, and their potential role in satiety hormone secretion and obesity is unknown.
    METHODS: Transcriptomic profiling of RGS was completed in native colonic EECs was completed using single-cell RNA sequencing (scRNA-Seq) in lean and obesity, and human jejunal EECs with data obtained from a publicly available RNAseq dataset (GSE114853). RGS validation studies were completed using whole mucosal intestinal tissue obtained during endoscopy in 61 patients (n = 42 OB, n = 19 Lean); a subset of patients\' postprandial plasma was assayed for GLP-1 and PYY. Ex vivo human intestinal cultures and in vitro NCI-H716 cells overexpressing RGS9 were exposed to GLP-1 secretagogues in conjunction with a nonselective RGS-inhibitor and assayed for GLP-1 secretion.
    RESULTS: Transcriptomic profiling of colonic and jejunal enteroendocrine cells revealed a unique RGS expression profile in EECs, and further within GLP-1+ L-type EECs. In obesity the RGS expression profile was altered in colonic EECs. Human gut RGS9 expression correlated positively with BMI and negatively with postprandial GLP-1 and PYY. RGS inhibition in human intestinal cultures increased GLP-1 release from EECs ex vivo. NCI-H716 cells overexpressing RGS9 displayed defective nutrient-stimulated GLP-1 secretion.
    CONCLUSIONS: This study introduces the expression profile of RGS in human EECs, alterations in obesity, and suggests a role for RGS proteins as modulators of GLP-1 and PYY secretion from intestinal EECs.
    BACKGROUND: AA is supported by the NIH(C-Sig P30DK84567, K23 DK114460), a Pilot Award from the Mayo Clinic Center for Biomedical Discovery, and a Translational Product Development Fund from The Mayo Clinic Center for Clinical and Translational Science Office of Translational Practice in partnership with the University of Minnesota Clinical and Translational Science Institute.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    来源于肠内分泌细胞(EEC),胰高血糖素样肽-1(GLP-1)和葡萄糖依赖性促胰岛素肽(GIP)是对血糖调节至关重要的关键肠促胰岛素激素。GLP-1类似物和GLP-1受体激活剂的药物广泛用于治疗2型糖尿病(T2D)和肥胖症。然而,目前还没有刺激内源性肠促胰岛素分泌的药物。这里,我们发现KCNH2钾通道在调节肠促胰岛素分泌中的关键作用。KCNH2与分泌肠促胰岛素的EECs在啮齿动物肠上皮中的共定位强调了其重要性。小鼠肠上皮细胞特异性KCNH2敲除可改善葡萄糖耐量并增加口服葡萄糖触发的GLP-1和GIP分泌,特别是GIP。此外,缺乏KCNH2的原发性肠上皮细胞表现出升高的肠促胰岛素,特别是营养刺激后的GIP分泌。机械上,EEC中的KCNH2敲低导致K+电流降低,动作电位持续时间延长,细胞内钙水平升高。最后,我们发现多非利特,一种KCNH2特异性抑制剂,在体外和体内可以促进高血糖小鼠肠内分泌STC-1细胞的肠促胰岛素分泌。这些发现阐明了,第一次,KCNH2调节EECs分泌肠促胰岛素的作用机制及应用.鉴于GLP-1和GIP在糖尿病和肥胖管理中的治疗前景,这项研究促进了我们对肠促胰岛素调节的理解,为治疗糖尿病和肥胖症的潜在肠促胰岛素分泌疗法铺平了道路。
    Derived from enteroendocrine cells (EECs), glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) are pivotal incretin hormones crucial for blood glucose regulation. Medications of GLP-1 analogs and GLP-1 receptor activators are extensively used in the treatment of type 2 diabetes (T2D) and obesity. However, there are currently no agents to stimulate endogenous incretin secretion. Here, we find the pivotal role of KCNH2 potassium channels in the regulation of incretin secretion. Co-localization of KCNH2 with incretin-secreting EECs in the intestinal epithelium of rodents highlights its significance. Gut epithelial cell-specific KCNH2 knockout in mice improves glucose tolerance and increases oral glucose-triggered GLP-1 and GIP secretion, particularly GIP. Furthermore, KCNH2-deficient primary intestinal epithelial cells exhibit heightened incretin, especially GIP secretion upon nutrient stimulation. Mechanistically, KCNH2 knockdown in EECs leads to reduced K+ currents, prolonged action potential duration, and elevated intracellular calcium levels. Finally, we found that dofetilide, a KCNH2-specific inhibitor, could promote incretin secretion in enteroendocrine STC-1 cells in vitro and in hyperglycemic mice in vivo. These findings elucidate, for the first time, the mechanism and application of KCNH2 in regulating incretin secretion by EECs. Given the therapeutic promise of GLP-1 and GIP in diabetes and obesity management, this study advances our understanding of incretin regulation, paving the way for potential incretin secretagogue therapies in the treatment of diabetes and obesity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胰高血糖素样肽1(GLP1),它主要从肠道的肠内分泌细胞(EEC)中的胰高血糖素原加工和裂解,作用于胰腺细胞中的GLP1受体以刺激胰岛素分泌和抑制胰高血糖素分泌。然而,GLP1处理没有被完全理解。这里,我们显示网状结构4B(Nogo-B),内质网(ER)驻留蛋白,与胰高血糖素原的主要胰高血糖素原片段相互作用以将胰高血糖素原保留在ER上,从而抑制PCSK1介导的高尔基体中胰高血糖素原的裂解。男性2型糖尿病(T2DM)小鼠的肠道Nogo-B基因敲除会增加GLP1和胰岛素水平,并降低胰高血糖素水平,从而减轻胰腺损伤和胰岛素抵抗。最后,我们发现糖尿病患者EECs中Nogo-B表达异常升高并抑制胰高血糖素原裂解。我们的研究揭示了在GLP1生产过程中涉及Nogo-B的亚细胞调节过程,并表明肠道Nogo-B是T2DM的潜在治疗靶标。
    Glucagon-like peptide 1 (GLP1), which is mainly processed and cleaved from proglucagon in enteroendocrine cells (EECs) of the intestinal tract, acts on the GLP1 receptor in pancreatic cells to stimulate insulin secretion and to inhibit glucagon secretion. However, GLP1 processing is not fully understood. Here, we show that reticulon 4B (Nogo-B), an endoplasmic reticulum (ER)-resident protein, interacts with the major proglucagon fragment of proglucagon to retain proglucagon on the ER, thereby inhibiting PCSK1-mediated cleavage of proglucagon in the Golgi. Intestinal Nogo-B knockout in male type 2 diabetes mellitus (T2DM) mice increases GLP1 and insulin levels and decreases glucagon levels, thereby alleviating pancreatic injury and insulin resistance. Finally, we identify aberrantly elevated Nogo-B expression and inhibited proglucagon cleavage in EECs from diabetic patients. Our study reveals the subcellular regulatory processes involving Nogo-B during GLP1 production and suggests intestinal Nogo-B as a potential therapeutic target for T2DM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肠内分泌细胞(EEC)以其全身激素作用而闻名,尤其是在调节食欲和血糖方面。人们对EEC生产的产品如何调节肠道内的局部环境知之甚少。这里,我们专注于EECs与其他肠细胞之间的旁分泌相互作用,因为它们调节肠稳态和生理的三个基本方面:1)肠干细胞功能和增殖;2)营养吸收;和3)粘膜屏障功能。我们还讨论了EEC表达多种激素的能力,描述体外和体内模型以研究EEC,并考虑胃肠道疾病中EECs是如何改变的。
    Enteroendocrine cells (EECs) are well-known for their systemic hormonal effects, especially in the regulation of appetite and glycemia. Much less is known about how the products made by EECs regulate their local environment within the intestine. Here, we focus on paracrine interactions between EECs and other intestinal cells as they regulate three essential aspects of intestinal homeostasis and physiology: 1) intestinal stem cell function and proliferation; 2) nutrient absorption; and 3) mucosal barrier function. We also discuss the ability of EECs to express multiple hormones, describe in vitro and in vivo models to study EECs, and consider how EECs are altered in GI disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    胰高血糖素样肽(GLP)-1是在食物摄入后由肠内分泌L-细胞释放的激素。L-细胞表达用于营养感知的各种受体,包括G蛋白偶联受体(GPR)。管腔附近的肠上皮细胞比隐窝底部的O2张力低,导致L细胞缺氧。我们假设缺氧会影响肠内分泌细胞系STC-1(最常用的模型)中营养刺激的GLP-1分泌。在这项研究中,我们研究了低氧(1%O2)对α-亚麻酸(αLA)刺激的GLP-1分泌及其受体表达的影响。将STC-1细胞在缺氧(1%O2)下孵育12小时并用αLA处理以刺激GLP-1分泌。12小时的缺氧没有改变基础GLP-1分泌,但显着减少营养素(αLA)刺激的GLP-1分泌。在常氧症中,与对照组相比,αLA(12.5μM)显着刺激(约5倍)GLP-1分泌,但是在缺氧的情况下,与常氧相比,GLP-1分泌减少了45%。αLA上调GPR120,也称为游离脂肪酸受体4(FFAR4),在常氧和缺氧下的表达。缺氧使GPR120和GPR40表达下调50%和60%,分别,与诺莫夏相比。这些发现表明,缺氧不会影响基础GLP-1分泌,但会降低营养刺激的GLP-1分泌。营养刺激的GLP-1分泌的减少是由于GPR120和GPR40受体表达的减少。肠道环境和炎症的变化可能导致上皮细胞和L细胞缺氧。
    Glucagon-like peptide (GLP)-1 is a hormone released by enteroendocrine L-cells after food ingestion. L-cells express various receptors for nutrient sensing including G protein-coupled receptors (GPRs). Intestinal epithelial cells near the lumen have a lower O2 tension than at the base of the crypts, which leads to hypoxia in L-cells. We hypothesized that hypoxia affects nutrient-stimulated GLP-1 secretion from the enteroendocrine cell line STC-1, the most commonly used model. In this study, we investigated the effect of hypoxia (1% O2) on alpha-linolenic acid (αLA) stimulated GLP-1 secretion and their receptor expressions. STC-1 cells were incubated for 12 h under hypoxia (1% O2) and treated with αLA to stimulate GLP-1 secretion. 12 h of hypoxia did not change basal GLP-1 secretion, but significantly reduced nutrient (αLA) stimulated GLP-1 secretion. In normoxia, αLA (12.5 μM) significantly stimulated (~ 5 times) GLP-1 secretion compared to control, but under hypoxia, GLP-1 secretion was reduced by 45% compared to normoxia. αLA upregulated GPR120, also termed free fatty acid receptor 4 (FFAR4), expressions under normoxia as well as hypoxia. Hypoxia downregulated GPR120 and GPR40 expression by 50% and 60%, respectively, compared to normoxia. These findings demonstrate that hypoxia does not affect the basal GLP-1 secretion but decreases nutrient-stimulated GLP-1 secretion. The decrease in nutrient-stimulated GLP-1 secretion was due to decreased GPR120 and GPR40 receptors expression. Changes in the gut environment and inflammation might contribute to the hypoxia of the epithelial and L-cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    代谢手术是2型糖尿病的有效治疗选择。然而,治疗范围受到意外不一致结果的限制.本研究旨在克服这些障碍,通过分析和比较外科解剖学,从一个新的角度确定基本机制,临床特征,代谢手术的结果,包括十二指肠空肠旁路,Roux-en-Y胃旁路术,胆胰分流,一次胃旁路吻合术,和他们修改的程序,主要关注非肥胖患者,以减轻超重2型糖尿病的混杂效应.沿小肠前后轴的区域上皮细胞生长和独特的绒毛形成取决于上皮与下层间充质之间的串扰。由于吻合部位上皮与对侧间充质之间的串扰改变,旁路手术后,远端肠的肠内分泌谱系被近端上皮取代。随后的肠道代偿性增殖加速了被替换的上皮的扩张,包括肠内分泌细胞.结果不理想的主要原因是十二指肠排斥不完全和胆胰腺肢体长度不足。我们预计这种新机制将对代谢手术结果产生重大影响,并为优化其在2型糖尿病中的有效性提供有价值的见解。
    Metabolic surgery is an effective treatment option for type 2 diabetes. However, the therapeutic scope has been limited by unexpected inconsistent outcomes. This study aims to overcome these obstacles by determining fundamental mechanisms from a novel perspective by analyzing and comparing the surgical anatomy, clinical characteristics, and outcomes of metabolic surgery, including duodenal-jejunal bypass, Roux-en-Y gastric bypass, biliopancreatic diversion, one anastomosis gastric bypass, and their modified procedures, predominantly focusing on nonobese patients to mitigate confounding effects from overweighted type 2 diabetes. Regional epithelial cell growth and unique villus formation along the anterior-posterior axis of the small intestine depend on crosstalk between the epithelium and the underlying mesenchyme. Due to altered crosstalk between the epithelium and the opposite mesenchyme at the anastomotic site, the enteroendocrine lineage of the distal intestine is replaced by the proximal epithelium after the bypass procedure. Subsequent intestinal compensatory proliferation accelerates the expansion of the replaced epithelium, including enteroendocrine cells. The primary reasons for unsatisfactory results are incomplete duodenal exclusion and insufficient biliopancreatic limb length. We anticipate that this novel mechanism will have a significant impact on metabolic surgery outcomes and provide valuable insight into optimizing its effectiveness in type 2 diabetes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在对《受控释放杂志》的《Orations-新视野》的贡献中,我讨论了我们对肠道激素刺激作为口服肽递送治疗策略进行的研究。口服药物递送的最大挑战之一涉及开发新的药物递送系统,其能够以治疗相关浓度将治疗性肽吸收到体循环中。这种情况在慢性疾病(如2型糖尿病)的治疗中尤其具有挑战性,其中经常需要每天注射。然而,对于某些肽,在药物递送方面可能存在替代方案以满足增加肽生物利用度的需要;对于肠道激素模拟物(包括胰高血糖素样肽(GLP)-1或GLP-2)就是这种情况.改善这些肽的口服递送的一个可能的替代方案是共刺激激素的内源性分泌以达到肽的治疗水平。本文将集中于对胃肠疾病治疗中从肠内分泌L细胞分泌的肠激素的刺激进行的研究。包括对在临床环境中实施这种方法的局限性和未来观点的批判性讨论。
    In this contribution to the Orations - New Horizons of the Journal of Controlled Release, I discuss the research that we have conducted on gut hormone stimulation as a therapeutic strategy in oral peptide delivery. One of the greatest challenges in oral drug delivery involves the development of new drug delivery systems that enable the absorption of therapeutic peptides into the systemic circulation at therapeutically relevant concentrations. This scenario is especially challenging in the treatment of chronic diseases (such as type 2 diabetes mellitus), wherein daily injections are often needed. However, for certain peptides, there may be an alternative in drug delivery to meet the need for increased peptide bioavailability; this is the case for gut hormone mimetics (including glucagon-like peptide (GLP)-1 or GLP-2). One plausible alternative for improved oral delivery of these peptides is the co-stimulation of the endogenous secretion of the hormone to reach therapeutic levels of the peptide. This oration will be focused on studies conducted on the stimulation of gut hormones secreted from enteroendocrine L cells in the treatment of gastrointestinal disorders, including a critical discussion of the limitations and future perspectives of implementing this approach in the clinical setting.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    定义肠内分泌(EE)细胞异质性的分化轨迹仍然不清楚。在本期《细胞干细胞》中,Singh等人1绘制EE细胞的分化景观,识别早期振荡细胞祖细胞状态,这在生成终端EE小区多样性中起着至关重要的作用。
    The differentiation trajectories defining enteroendocrine (EE) cell heterogeneity remain obscure. In this issue of Cell Stem Cell, Singh et al.1 map the differentiation landscape of EE cells, identifying early oscillating cell progenitor states, which play a critical role in generating terminal EE cell diversity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    2型糖尿病(T2D)和肥胖症的全球患病率不断上升,因此需要开发新的口服药物。G蛋白偶联受体119(GPR119)的激动剂已被认为可调节T2D中的代谢稳态,肥胖,和脂肪肝。然而,脱靶效应阻碍了合成GPR119激动剂候选药物的发展。非系统性,肠道限制性GPR119激动被认为是一种替代策略,可以局部刺激肠道肠内分泌细胞(EEC)分泌肠促胰岛素,不需要全身的药物供应,从而减轻传统的类相关副作用。在这里,我们报告了临床前急性安全性,功效,和新的GPR119激动剂化合物ps297和ps318的药代动力学(PK),这些化合物可能靶向肠道EEC进行肠促胰岛素分泌。在一项疗效证明研究中,两种化合物在健康小鼠的葡萄糖和混合餐耐受试验中都显示了胰高血糖素样肽-1(GLP-1)的分泌能力.此外,糖尿病db/db小鼠中西格列汀与研究化合物的共同给药导致协同作用,GLP-1浓度上升三倍。在体外Caco-2细胞模型中评估的ps297和ps318均表现出低的肠通透性。对健康小鼠进行的单次口服剂量PK研究表明两种药剂的全身生物利用度差。化合物ps297的PK测量值(平均值±SD)(Cmax23±19ng/mL,Tmax范围0.5-1小时,AUC0-24h19.6±21h*ng/mL)和ps318(Cmax75±22ng/mL,Tmax范围0.25-0.5h,AUC0-24h35±23h*ng/mL)提示口服吸收不良。此外,对小鼠的药物排泄模式的检查显示,大约25%(ps297)和4%(ps318)的药物通过粪便排泄为不变的形式,而尿液中排泄的药物浓度可忽略不计(<0.005%)。这些急性PK/PD评估表明,肠道是两种药物的主要作用部位。在斑马鱼和健康小鼠模型中进行的毒性评估证实了两种化合物的安全性和耐受性。未来在相关疾病模型中的慢性体内研究对于确认这些新型化合物的长期安全性和有效性至关重要。
    The escalating global prevalence of type-2 diabetes (T2D) and obesity necessitates the development of novel oral medications. Agonism at G-protein coupled receptor-119 (GPR119) has been recognized for modulation of metabolic homeostasis in T2D, obesity, and fatty liver disease. However, off-target effects have impeded the advancement of synthetic GPR119 agonist drug candidates. Non-systemic, gut-restricted GPR119 agonism is suggested as an alternative strategy that may locally stimulate intestinal enteroendocrine cells (EEC) for incretin secretion, without the need for systemic drug availability, consequently alleviating conventional class-related side effects. Herein, we report the preclinical acute safety, efficacy, and pharmacokinetics (PK) of novel GPR119 agonist compounds ps297 and ps318 that potentially target gut EEC for incretin secretion. In a proof-of-efficacy study, both compounds demonstrated glucagon-like peptide-1 (GLP-1) secretion capability during glucose and mixed-meal tolerance tests in healthy mice. Furthermore, co-administration of sitagliptin with investigational compounds in diabetic db/db mice resulted in synergism, with GLP-1 concentrations rising by three-fold. Both ps297 and ps318 exhibited low gut permeability assessed in the in-vitro Caco-2 cell model. A single oral dose PK study conducted on healthy mice demonstrated poor systemic bioavailability of both agents. PK measures (mean ± SD) for compound ps297 (Cmax 23 ± 19 ng/mL, Tmax range 0.5 - 1 h, AUC0-24 h 19.6 ± 21 h*ng/mL) and ps318 (Cmax 75 ± 22 ng/mL, Tmax range 0.25 - 0.5 h, AUC0-24 h 35 ± 23 h*ng/mL) suggest poor oral absorption. Additionally, examinations of drug excretion patterns in mice revealed that around 25 % (ps297) and 4 % (ps318) of the drugs were excreted through faeces as an unchanged form, while negligible drug concentrations (<0.005 %) were excreted in the urine. These acute PK/PD assessments suggest the gut is a primary site of action for both agents. Toxicity assessments conducted in the zebrafish and healthy mice models confirmed the safety and tolerability of both compounds. Future chronic in-vivo studies in relevant disease models will be essential to confirm the long-term safety and efficacy of these novel compounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质α-突触核蛋白的聚集沉积和大脑中多巴胺的消耗水平与帕金森病的发展相关。治疗通常集中在补充大脑中的多巴胺;然而,大脑可能不是唯一需要注意的地方。在任何运动症状发作之前,α-突触核蛋白的聚集体似乎在肠道中积累。肠内分泌细胞(特化肠上皮细胞)可能是肠道α-突触核蛋白的来源,因为它们天然表达这种蛋白质。肠内分泌细胞经常暴露于肠道细菌及其代谢物,因为它们与肠腔接壤。这些细胞还表达多巴胺代谢途径并与迷走神经元形成突触,支配肠道和大脑。通过这种联系,帕金森病的病理可能起源于肠道,并随着时间的推移扩散到大脑。由于对肠中发生α-突触核蛋白聚集的机制的理解有限,因此缺乏预防这种疾病进展的有效治疗剂。我们先前提出了一种肠道细菌代谢途径,该途径负责启动依赖于多巴胺氧化的α-突触核蛋白聚集。这里,我们开发了一种新工具,基于激光诱导石墨烯的电化学传感器芯片,随着时间的推移跟踪α-突触核蛋白聚集和多巴胺水平。使用这些传感器芯片,我们评估了饮食来源的儿茶酚二氢咖啡酸和咖啡酸作为α-突触核蛋白聚集的潜在抑制剂。我们的结果表明这些分子抑制多巴胺氧化。我们还发现这些膳食儿茶酚抑制STC-1肠内分泌细胞中的α-突触核蛋白聚集。这些发现是揭示靶向治疗帕金森病的新途径的关键下一步。特别是在可用于重塑肠道环境的功能性食品的背景下。
    Aggregated deposits of the protein α-synuclein and depleting levels of dopamine in the brain correlate with Parkinson\'s disease development. Treatments often focus on replenishing dopamine in the brain; however, the brain might not be the only site requiring attention. Aggregates of α-synuclein appear to accumulate in the gut years prior to the onset of any motor symptoms. Enteroendocrine cells (specialized gut epithelial cells) may be the source of intestinal α-synuclein, as they natively express this protein. Enteroendocrine cells are constantly exposed to gut bacteria and their metabolites because they border the gut lumen. These cells also express the dopamine metabolic pathway and form synapses with vagal neurons, which innervate the gut and brain. Through this connection, Parkinson\'s disease pathology may originate in the gut and spread to the brain over time. Effective therapeutics to prevent this disease progression are lacking due to a limited understanding of the mechanisms by which α-synuclein aggregation occurs in the gut. We previously proposed a gut bacterial metabolic pathway responsible for the initiation of α-synuclein aggregation that is dependent on the oxidation of dopamine. Here, we develop a new tool, a laser-induced graphene-based electrochemical sensor chip, to track α-synuclein aggregation and dopamine level over time. Using these sensor chips, we evaluated diet-derived catechols dihydrocaffeic acid and caffeic acid as potential inhibitors of α-synuclein aggregation. Our results suggest that these molecules inhibit dopamine oxidation. We also found that these dietary catechols inhibit α-synuclein aggregation in STC-1 enteroendocrine cells. These findings are critical next steps to reveal new avenues for targeted therapeutics to treat Parkinson\'s disease, specifically in the context of functional foods that may be used to reshape the gut environment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号