electrodeposition

电沉积
  • 文章类型: Journal Article
    碲化铋,一种高效的热电材料,在可穿戴设备中围绕室温的应用中脱颖而出。通过利用人体和环境温度之间建立的热梯度,我们可以产生可用的电力。值得注意的是,与它们的本体对应物相比,碲化铋纳米结构表现出显著较低的热导率。因此,实现的热电效率明显更高。我们的研究重点是在由聚酯制成的柔性基板内开发基于碲化铋的高效纳米结构材料。我们采用可扩展的方法,如模板辅助电化学沉积,制造这些纳米结构。在这项研究中,我们提出了一种开发柔性纳米结构热电材料的方法。尽管使用了减少数量的活性材料,我们的电化学沉积的纳米结构在一个灵活的模板展示了一个显着的性能。它们表现出传统电化学制造的Bi2Te3薄膜报告的功率因数的24%,尤其是,它们甚至超过了用于创建柔性发电机的柔性Bi2Te3基墨水的功率因数。这一成就强调了我们的方法在提高效率方面的潜力,柔性热电装置。
    Bismuth telluride, a highly efficient thermoelectric material, stands out for applications around room temperature in wearable devices. By harnessing the thermal gradient established between the human body and ambient temperature, we can generate useable electricity. Notably, bismuth telluride nanostructures exhibit significantly lower thermal conductivities compared to their bulk counterparts. As a result, the thermoelectric efficiency achieved is notably higher. Our research focuses on developing efficient nanostructured materials based on bismuth telluride inside a flexible substrate made of polyester. We employ scalable methods, such as template-assisted electrochemical deposition, to fabricate these nanostructures. In this study, we present an approach to the development of flexible nanostructured thermoelectric materials. Despite using a reduced quantity of active material, our electrochemically deposited nanostructures inside a flexible template demonstrate a remarkable performance. They exhibit 24 % of the Power Factor reported for conventional electrochemically fabricated Bi2Te3 thin films, and notably, they even surpass the Power Factor reported for flexible Bi2Te3-based inks used in the creation of flexible generators. This achievement underscores the potential of our method in the advancement of efficient, flexible thermoelectric devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    导电金属有机骨架(cMOFs)同时提供高孔隙率和导电性,使它们成为化学电阻传感器应用的理想选择。最近,将诸如催化纳米颗粒的外来元素并入cMOFs已成为增强其传感特性的典型策略。然而,这种方法带来了严峻的挑战,例如阻碍气体扩散的孔隙堵塞,以及可逆性的有限改进。在这里,单原子催化剂(SAC)官能化的cMOF是当前限制的强大解决方案。可以通过金属前体的电化学沉积来实现cMOF中的SAC的容易的官能化。作为概念的证明,合成了Pd-SAC官能化的cMOF。在保持MOF基质的孔隙率的同时,用Pd-N4配位将PdSAC稳定在cMOF的晶面间位点。值得注意的是,PdSAC产生的微环境可防止cMOFs的不可逆结构变形,并促进NO2的可逆电荷转移。因此,CMOF表现出完全可恢复的NO2响应,这是以前用纳米粒子功能化无法达到的。此外,结合保留的孔隙度进行气体扩散,与此类其他2D-cMOFs相比,它具有最快的响应和恢复速度。
    Conductive metal-organic frameworks (cMOFs) offer high porosity and electrical conductivity simultaneously, making them ideal for application in chemiresistive sensors. Recently, incorporating foreign elements such as catalytic nanoparticles into cMOFs has become a typical strategy to enhance their sensing properties. However, this approach has led to critical challenges, such as pore blockage that impedes gas diffusion, as well as limited improvement in reversibility. Herein, single-atom catalyst (SAC)-functionalized cMOF is presented as a robust solution to the current limitations. Facile functionalization of SACs in a cMOF can be achieved through electrochemical deposition of metal precursors. As a proof of concept, a Pd SAC-functionalized cMOF is synthesized. The Pd SACs are stabilized at the interplanar sites of cMOF with Pd-N4 coordination while preserving the porosity of the MOF matrix. Notably, the microenvironment created by Pd SACs prevents irreversible structural distortion of cMOFs and facilitates a reversible charge transfer with NO2. Consequently, the cMOF exhibits a fully recoverable NO2 response, which was not previously attainable with the nanoparticle functionalization. Additionally, with the combination of preserved porosity for gas diffusion, it demonstrates the fastest level of response and recovery speed compared to other 2D-cMOFs of this class.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们推荐从LiCoO2(LCO)锂离子电池(LIB)阴极中回收钴的最佳实践,方法是(i)使用绿色深共晶溶剂(DES)浸出和(ii)随后的电沉积,通过对氯化胆碱(ChCl):乙二醇(EG)DES的个案研究。DES物理性质(电导率,粘度,和表面张力)通过在1:2和1:5(ChCl:EG)的摩尔比之间改变组成来定制。随着浸出工艺参数(温度,持续时间),增加氢键供体(HBDs)的比例降低了DES表面张力并增强了浸出。使用1:5的ChCl:EGDES在160°C和48小时下实现完全的Co回收。由于DES热降解,不鼓励>160oC的浸出温度。优化了电沉积工艺,以实现高法拉第效率的选择性Co回收。DES的浸出能力与电沉积电池组件的稳定性相反,并且需要调整操作参数以最大程度地减少降解。使用1:5DES渗滤液的优化系统(铜阴极和不锈钢阳极)表现出〜80%的法拉第效率,在50oC时,特定的Co回收率为〜0.8mghr-1cm-1,并且有均匀沉积的证据。DES表面张力是金属回收的关键描述符,并提出了最大限度地选择性回收钴的指导方针。
    We recommend best practices for the recovery of cobalt from LiCoO2 (LCO) lithium-ion battery (LIB) cathodes by (i) leaching using green deep eutectic solvents (DES) and (ii) subsequent electrodeposition, through a case study of the choline chloride (ChCl):ethylene glycol (EG) DES. DES physical properties (conductivity, viscosity, and surface tension) were tailored by varying the composition between mole ratios of 1:2 and 1:5 (ChCl:EG). Examined along with leaching process parameters (temperature, duration), increasing the fraction of hydrogen bond donors (HBDs) decreased DES surface tension and enhanced leaching. Complete Co recovery was achieved using 1:5 ChCl:EG DES at 160oC and 48 hours. Leaching temperatures >160oC are discouraged due to DES thermal degradation. The electrodeposition process was optimized for selective Co recovery with high faradaic efficiency.  The leaching ability of the DES was antithetical to the stability of electrodeposition cell components and required operational parameter adjustment to minimize degradation. The optimized system (copper cathode and stainless-steel anode) employing 1:5 DES leachate exhibited a faradaic efficiency of ~80 %, specific Co recovery of ~0.8 mg hr-1 cm-1 at 50 oC and evidence of uniform deposition. DES surface tension is a key descriptor of metal recovery, and guidelines are presented to maximize selective Co recovery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    实验室制造的生物二氧化硅(SiO2)纳米颗粒是从废弃生物质(稻壳)中获得的,并通过共电沉积技术在镍基复合膜的生产中用作环保填料。使用XRD对所产生的生物二氧化硅纳米颗粒进行了表征,FTIR,和FE-SEM/EDS。获得了具有高SiO2含量的无定形纳米级生物二氧化硅颗粒。电沉积的各种电流方式,例如直流电(DC),脉动电流(PC),和反向电流(RC)制度,用于从氨基磺酸盐电解质制备Ni和Ni/SiO2薄膜。在有或没有1.0wt的情况下电沉积的Ni膜。使用FE-SEM/EDS(形态/元素分析,圆度),AFM(粗糙度),维氏显微压痕(显微硬度),和薄层电阻。由于加入了SiO2纳米颗粒,Ni/SiO2膜比从纯氨基磺酸盐电解质获得的膜更粗糙。将SiO2添加到氨基磺酸盐电解质中还导致Ni膜的粗糙度和电导率增加。Ni/SiO2薄膜的表面粗糙度值约为44.0%,48.8%,比使用DC生产的纯Ni薄膜大68.3%,PC,和RC制度,分别。使用Chen-Gao(C-G)复合硬度模型评估了Ni和Ni/SiO2薄膜的显微硬度,结果表明,所得Ni/SiO2薄膜比纯Ni薄膜具有更高的硬度。根据所应用的电沉积方案,Ni膜的硬度从使用PC方案获得的Ni/SiO2膜的29.1%增加到使用RC方案获得的95.5%,对于使用RC方案生产的Ni/SiO2薄膜,达到最大值6.880GPa。
    Lab-made biosilica (SiO2) nanoparticles were obtained from waste biomass (rice husks) and used as eco-friendly fillers in the production of nickel matrix composite films via the co-electrodeposition technique. The produced biosilica nanoparticles were characterized using XRD, FTIR, and FE-SEM/EDS. Amorphous nano-sized biosilica particles with a high SiO2 content were obtained. Various current regimes of electrodeposition, such as direct current (DC), pulsating current (PC), and reversing current (RC) regimes, were applied for the fabrication of Ni and Ni/SiO2 films from a sulfamate electrolyte. Ni films electrodeposited with or without 1.0 wt.% biosilica nanoparticles in the electrolyte were characterized using FE-SEM/EDS (morphology/elemental analyses, roundness), AFM (roughness), Vickers microindentation (microhardness), and sheet resistance. Due to the incorporation of SiO2 nanoparticles, the Ni/SiO2 films were coarser than those obtained from the pure sulfamate electrolyte. The addition of SiO2 to the sulfamate electrolyte also caused an increase in the roughness and electrical conductivity of the Ni films. The surface roughness values of the Ni/SiO2 films were approximately 44.0%, 48.8%, and 68.3% larger than those obtained for the pure Ni films produced using the DC, PC, and RC regimes, respectively. The microhardness of the Ni and Ni/SiO2 films was assessed using the Chen-Gao (C-G) composite hardness model, and it was shown that the obtained Ni/SiO2 films had a higher hardness than the pure Ni films. Depending on the applied electrodeposition regime, the hardness of the Ni films increased from 29.1% for the Ni/SiO2 films obtained using the PC regime to 95.5% for those obtained using the RC regime, reaching the maximal value of 6.880 GPa for the Ni/SiO2 films produced using the RC regime.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    不断发展的环境对用于吸收电磁波(EMW)的材料的机械质量提出了越来越严格的要求。因此,迫切需要能够有效吸收EMW并承受恶劣的电磁条件的先进材料。在这项研究中,电沉积方法有效地用于在碳纳米管和碳泡沫的复合结构上以可控的方式合成镍钴层状双氢氧化物(NiCo-LDHs),创造一个精致的建筑。电沉积时间的操纵促进了复合材料内层状结构密度的调节,从而显著增强其偏振弛豫性能。增加的缺陷位点和界面极化增强了阻抗匹配和衰减常数,从而大大提高了吸收性能。优化后的样品在对比实验分析中表现出优异的吸波性能,达到-58.18dB的最大反射损耗。它在2.28mm的波长下也具有5.36GHz的有效吸收带宽。LDH的特殊隔离效果,再加上多孔碳骨架出色的绝缘能力,复合材料具有显著的耐腐蚀性和隔热性能。因此,这一发现为设计耐环境吸收材料提供了新的见解。
    The constantly evolving environment imposes increasingly stringent demands on the mechanical qualities of materials employed for absorbing electromagnetic waves (EMWs). Therefore, there is an urgent need for advanced materials capable of efficiently absorbing EMWs and withstanding harsh electromagnetic conditions. In this study, the electrodeposition method was effectively used to synthesize nickel-cobalt layered double hydroxides (NiCo-LDHs) in a controlled manner on a composite structure of carbon nanotubes and carbon foam, creating an exquisite construction. The manipulation of the electrodeposition time facilitated the regulation of the density of the layered structure within the composite material, thereby significantly enhancing its polarization relaxation performance. Increased defect sites and interface polarization enhance impedance matching and the attenuation constant, resulting in greatly improved absorption performance. The optimized sample demonstrated exceptional wave-absorbing performance in comparative experimental analysis, attaining a maximum reflection loss of -58.18 dB. It also has an effective absorption bandwidth of 5.36 GHz at a wavelength of 2.28 mm. The exceptional isolation effect of LDH, coupled with the outstanding insulation ability of the porous carbon skeleton, confers remarkable corrosion resistance and thermal insulation performance on the composite material. Hence, this discovery offers novel insights into designing environmentally tolerant absorbent materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电催化硝酸盐还原反应为环境友好的氨(NH3)合成和废水处理提供了有希望的途径。要考虑的一个重要方面是电催化剂的精心设计。这项研究探讨了利用电沉积在钛网(NixCoy@TiO2/TM)上的Ni-Co合金纳米片装饰的三维二氧化钛(3D-TiO2)纳米带进行有效的电催化NH3生产。优化的Ni1Co3@TiO2/TM电极在含有0.1MNO3-的0.1MKOH溶液中实现了676.3±27.1umolh-1cm-2的显着NH3产率,令人印象深刻的法拉第效率(FE)为95.1%±2.1%相对于可逆氢电极。此外,该电极对模拟废水中的NH3合成具有特殊的电化学活性,在-0.4V的相同电势下,提供751.6±44.3umolh-1cm-2的出色NH3产率,FE为96.8%±0.4%。此外,电极表现出最小的电流密度变化,在整个24小时稳定性测试和20循环测试中,NH3产率和FEs,证明其优异的稳定性和耐久性。这项研究提供了一种简单的电沉积方法,用于开发3D纳米结构合金作为室温下硝酸盐电合成NH3的催化剂。
    Electrocatalytic nitrate reduction reaction presents a promising avenue for environmentally friendly ammonia (NH3) synthesis and wastewater treatment. An essential aspect to consider is the meticulous design of electrocatalysts. This study explores the utilization of a Ni-Co alloy nanosheet-decorated three-dimensional titanium dioxide (3D-TiO2) nanobelts electrodeposited on titanium meshes (NixCoy@TiO2/TM) for efficient electrocatalytic NH3 production. The optimized Ni1Co3@TiO2/TM electrode achieves a significant NH3 yield of 676.3 ± 27.1 umol h-1 cm-2 with an impressive Faradaic efficiency (FE) of 95.1 % ± 2.1 % in a 0.1 M KOH solution containing 0.1 M NO3- at -0.4 V versus the reversible hydrogen electrode. Additionally, the electrode demonstrates exceptional electrochemical activity for NH3 synthesis in simulated wastewater, delivering an outstanding NH3 yield of 751.6 ± 44.3 umol h-1 cm-2 with a FE of 96.8 % ± 0.4 % at the same potential of -0.4 V. Moreover, the electrode exhibits minimal variation in current density, NH3 yields and FEs throughout the 24-h stability test and the 20-cycle test, demonstrating its excellent stability and durability. This study offers a straightforward electrodeposited approach for the development of 3D-nanostructured alloys as catalysts for NH3 electrosynthesis from nitrates at room temperature.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    有机电化学晶体管(OECT)的垂直结构,由于它们的亚微米通道长度,将自己展示为实现高gm/τ比的简单设计方法,品质因数,其通过器件的跨导(gm=dID/dVGS)和开关时间常数(τ)来评估器件的性能。然而,随着几何形状的实际限制被克服,寄生现象的影响变得更加明显,限制了器件的性能。减少漏极-源极电路中寄生电阻的有害影响的一种方法是使用四点源技术。这里,垂直OECT采用四点结构制造,以接近这些器件的固有极限。结果表明,该方法改善了器件的饱和行为,缩小测量的gm和固有跨导gmi在其峰值之间的差距。总的来说,这里讨论的结果提供了寄生电阻对OECT的影响的洞察,与场效应晶体管相比,没有被广泛记录。
    Vertical architectures for organic electrochemical transistors (OECTs), due to their submicrometer channel lengths, have presented themselves as a straightforward design approach for achieving high gm/τ ratios, a figure of merit that assesses the performance of the devices by virtue of their transconductance (gm = dID/dVGS) and switching time constant (τ). However, as the practical limitations of the geometries are overcome, the influence of parasitic phenomena becomes more dominant and limits the performance of the device. One approach to reduce the detrimental effects of parasitic resistance in the drain-source circuit is to use a four-point sourcing technique. Here, vertical OECTs are fabricated with four-point structures to approach the intrinsic limit of these devices. It is shown that this approach improves the saturation behavior of the devices, closing the gap between measured gm and intrinsic transconductance gmi at their peak values. Overall, the results discussed here provide insight into the effects of parasitic resistance on OECTs, which in contrast to field-effect transistors, are not as extensively documented.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    杂原子掺杂电极为提高钒氧化还原液流电池(VRFB)的寿命和效率提供了有希望的应用。在这里,我们可控地合成了N,通过引入质子酸并结合电沉积和高温碳化,制备了具有导电网络结构的P共掺杂石墨纤维电极。H2SO4和H3PO4作为助剂和掺杂剂,分别。N和P之间的协同效应在电极上引入了额外的缺陷结构和活性位点,从而提高反应速率,正如密度泛函理论计算所证实的那样。此外,碳纤维的导电网络结构改善了电极到电极的连接性并降低了电池内部电阻。这些策略的优化集成显著增强了VRFB性能。因此,N,P共掺杂碳纤维改性的石墨毡电极在200mAcm-2时表现出非常高的能量效率,比空白电池高7.9%。这种原位可控合成的集成方法为开发高性能,稳定的电极,从而有助于储能领域的进步。
    Heteroatom-doped electrodes offer promising applications for enhancing the longevity and efficiency of vanadium redox flow battery (VRFB). Herein, we controllably synthesized N, P co-doped graphite fiber electrodes with conductive network structure by introducing protonic acid and combining electrodeposition and high temperature carbonization. H2SO4 and H3PO4 act as auxiliary and dopant, respectively. The synergistic effect between N and P introduces additional defect structures and active sites on the electrodes, thereby enhancing the reaction rate, as confirmed by density functional theory calculations. Furthermore, the conductive network structure of carbon fibers improves electrode-to-electrode connectivity and reduces internal battery resistance. The optimized integration of these strategies enhances VRFB performance significantly. Consequently, the N, P co-doped carbon fiber modified graphite felt electrodes demonstrate remarkably high energy efficiency at 200 mA cm-2, surpassing that of the blank battery by 7.9 %. This integrated approach to in-situ controllable synthesis provides innovative insights for developing high-performance, stable electrodes, thereby contributing to advancements in the field of energy storage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这里,介绍了通过电沉积在MoOx基体上装饰的包含Ni4Mo纳米合金的Ni-Mo催化剂的异质结构。该催化剂在一系列pH条件下表现出显著的析氢反应(HER)活性。非均相Ni-Mo催化剂仅显示24和86、21和60以及37和168mV的低过电位,在碱性条件下产生10和100mAcm-2(η10和η100)的电流密度,酸性,和中立的媒体,分别,它代表了HER最具活性的催化剂之一。增强的活性归因于氢溢出效应,氢原子在Ni4Mo合金和MoOx基体之间迁移,形成氢钼青铜作为额外的活性位点。此外,Ni4Mo促进了水的解离过程,这有助于碱性/中性HER中的Volmer步骤。通过电化学分析,原位拉曼光谱,和密度泛函理论计算,她的快速机制被阐明。
    Herein, a heterogeneous structure of Ni-Mo catalyst comprising Ni4Mo nanoalloys decorated on a MoOx matrix via electrodeposition is introduced. This catalyst exhibits remarkable hydrogen evolution reaction (HER) activity across a range of pH conditions. The heterogeneous Ni-Mo catalyst showed low overpotentials only of 24 and 86, 21 and 60, and 37 and 168 mV to produce a current density of 10 and 100 mA cm-2 (η10 and η100) in alkaline, acidic, and neutral media, respectively, which represents one of the most active catalysts for the HER. The enhanced activity is attributed to the hydrogen spillover effect, where hydrogen atoms migrate between the Ni4Mo alloys and the MoOx matrix, forming hydrogen molybdenum bronze as additional active sites. Additionally, the Ni4Mo facilitated the water dissociation process, which helps the Volmer step in the alkaline/neutral HER. Through electrochemical analysis, in situ Raman spectroscopy, and density functional theory calculations, the fast HER mechanism is elucidated.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    采用非Pt阴极的锌-空气电池对于推进阴极氧还原反应(ORR)具有重要的前景。然而,不良的固有导电性和聚集倾向阻碍了金属有机骨架(MOFs)作为活性ORR阴极的应用。导电MOFs具有各种原子分散的金属中心和对齐的固有拓扑结构,消除额外的碳化过程,以实现高导电性。这里,介绍了一种新型的室温电化学阴极电沉积方法,用于制造均匀连续的层状2D双金属导电MOF薄膜阴极,使用有机配体2,3,6,7,10,11-己二亚苯基(HITP)并改变Ni/Cu比。通过密度泛函理论(DFT)研究了金属中心对调制ORR性能的影响,证明双金属导电MOF的性能可以通过未配对的3d电子和掺杂的Cu中的Jahn-Teller效应来有效地调节。所得双金属Ni2.1Cu0.9(HITP)2表现出优异的ORR性能,具有0.93V的高发病潜力。此外,组装的水性锌-空气电池具有706.2mAhg-1的高比容量,以及超过1250次循环的出色长期充电/放电稳定性。
    Zinc-air batteries employing non-Pt cathodes hold significant promise for advancing cathodic oxygen reduction reaction (ORR). However, poor intrinsic electrical conductivity and aggregation tendency hinder the application of metal-organic frameworks (MOFs) as active ORR cathodes. Conductive MOFs possess various atomically dispersed metal centers and well-aligned inherent topologies, eliminating the additional carbonization processes for achieving high conductivity. Here, a novel room-temperature electrochemical cathodic electrodeposition method is introduced for fabricating uniform and continuous layered 2D bimetallic conductive MOF films cathodes without polymeric binders, employing the organic ligand 2,3,6,7,10,11-hexaiminotriphenylene (HITP) and varying the Ni/Cu ratio. The influence of metal centers on modulating the ORR performance is investigated by density functional theory (DFT), demonstrating the performance of bimetallic conductive MOFs can be effectively tuned by the unpaired 3d electrons and the Jahn-Teller effect in the doped Cu. The resulting bimetallic Ni2.1Cu0.9(HITP)2 exhibits superior ORR performance, boasting a high onset potential of 0.93 V. Moreover, the assembled aqueous zinc-air battery demonstrates high specific capacity of 706.2 mA h g-1, and exceptional long-term charge/discharge stability exceeding 1250 cycles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号