electrocorticography (ECoG)

皮质电图 (ECOG)
  • 文章类型: Journal Article
    通过大脑刺激编码人工感知,尤其是高级认知功能,如言语感知,是脑机接口(BCI)中最艰巨的挑战之一。在过去的70年中,脑刺激已用于临床实践中的功能映射,以治疗影响神经系统的各种疾病。包括癫痫,帕金森病,特发性震颤,和肌张力障碍.最近,直接电刺激已经被用来唤起人类的各种形式的感知,从感觉运动,听觉,和视觉到言语认知。成功地唤起和微调人工感知可以彻底改变患有言语障碍的个人的通信,并显着增强脑机接口技术的能力。然而,尽管关于编码各种感知的大量文献和语音BCI的日益普及,诱导人工语音感知在很大程度上仍未被探索,其潜力尚未确定。在本文中,我们研究了各种刺激技术,用于唤起复杂的感知和目标大脑区域,以输入类似语音的信息。最后,我们讨论了解决语音编码挑战的策略,并讨论了这些方法的前景。
    Encoding artificial perceptions through brain stimulation, especially that of higher cognitive functions such as speech perception, is one of the most formidable challenges in brain-computer interfaces (BCI). Brain stimulation has been used for functional mapping in clinical practices for the last 70 years to treat various disorders affecting the nervous system, including epilepsy, Parkinson\'s disease, essential tremors, and dystonia. Recently, direct electrical stimulation has been used to evoke various forms of perception in humans, ranging from sensorimotor, auditory, and visual to speech cognition. Successfully evoking and fine-tuning artificial perceptions could revolutionize communication for individuals with speech disorders and significantly enhance the capabilities of brain-computer interface technologies. However, despite the extensive literature on encoding various perceptions and the rising popularity of speech BCIs, inducing artificial speech perception is still largely unexplored, and its potential has yet to be determined. In this paper, we examine the various stimulation techniques used to evoke complex percepts and the target brain areas for the input of speech-like information. Finally, we discuss strategies to address the challenges of speech encoding and discuss the prospects of these approaches.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这项研究旨在估计最大功耗,以确保皮下植入胸前区域的钛封闭胸壁单元(CWU)的热安全操作。该单元是设想的完全可植入双向脑机接口(BD-BCI)的中心部分。为此,我们使用COMSOL中实现的有限元方法创建了热仿真模型。我们还进行了敏感性分析,以确保我们的预测对生理和环境参数的自然变化具有鲁棒性。基于这一分析,我们预测,CWU可以消耗378和538mW之间的功率,而不会将周围组织的温度提高到2〇C以上的热安全阈值。该功率预算应足以为CWU的所有基本功能供电,其中包括训练解码器,在线解码,无线数据传输,和皮质刺激。此功率预算评估为CWU的设计提供了重要规范,CWU是完全可植入BD-BCI系统的组成部分。
    This study aims to estimate the maximum power consumption that guarantees a thermally safe operation for a titanium-enclosed chest wall unit (CWU) subcutaneously implanted in the pre-pectoral area. This unit is a central piece of an envisioned fully-implantable bi-directional brain-computer interface (BD-BCI). To this end, we created a thermal simulation model using the finite element method implemented in COMSOL. We also performed a sensitivity analysis to ensure that our predictions were robust against the natural variation of physiological and environmental parameters. Based on this analysis, we predict that the CWU can consume between 378 and 538 mW of power without raising the surrounding tissue\'s temperature above the thermal safety threshold of 2  ∘ C. This power budget should be sufficient to power all of the CWU\'s basic functionalities, which include training the decoder, online decoding, wireless data transmission, and cortical stimulation. This power budget assessment provides an important specification for the design of a CWU-an integral part of a fully-implantable BD-BCI system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的-本研究旨在表征具有不同感觉目标的运动,通过对比处理本体感受和视觉运动信息所涉及的神经活动。要做到这一点,我们开发了一种新的方法,利用瞬时伽马频率参数的不规则性进行表征。 方法-在这项研究中,8例接受清醒脑深部刺激(DBS)植入手术的原发性震颤患者反复触摸临床医生的手指(向前视觉引导/FV运动),然后触摸自己的下巴(向后本体引导/BP运动)。来自运动(M1)的神经皮质图(ECoG)记录,体感(S1),获得后顶叶皮质(PPC),并在伽马范围(30-80Hz)内进行带通滤波。事件间间隔(IEI;瞬时伽马频率的倒数)的不规则性被检查为:1)振幅与其进行的IEI之间的相关性,和2)IEI时间序列的自动信息。我们进一步探索了通过加速和减速力对FV和BP运动进行分段后的网络连通性,并应用IEI参数转移熵方法。
主要结果-概念化IEI中的不规则性反映了活跃的新信息处理,我们发现在BP运动期间M1的不规则性最高,FV运动期间PPC最高,在所有站点休息时最低。此外,在FV运动过程中,从S1到M1和从S1到PPC的连通性最强,在静息时最弱。
意义-我们介绍了一种利用瞬时伽马频率的新颖方法(即,IEI)在表征具有不同感觉目标的目标导向运动时的参数,并演示其用于告知运动皮层网络内的定向连通性。该方法成功地表征了不同的运动类型,同时提供对感觉运动整合过程的解释。 .
    Objective.The study aims to characterize movements with different sensory goals, by contrasting the neural activity involved in processing proprioceptive and visuo-motor information. To accomplish this, we have developed a new methodology that utilizes the irregularity of the instantaneous gamma frequency parameter for characterization.Approach.In this study, eight essential tremor patients undergoing an awake deep brain stimulation implantation surgery repetitively touched the clinician\'s finger (forward visually-guided/FV movement) and then one\'s own chin (backward proprioceptively-guided/BP movement). Neural electrocorticographic recordings from the motor (M1), somatosensory (S1), and posterior parietal cortex (PPC) were obtained and band-pass filtered in the gamma range (30-80 Hz). The irregularity of the inter-event intervals (IEI; inverse of instantaneous gamma frequency) were examined as: (1) auto-information of the IEI time series and (2) correlation between the amplitude and its proceeding IEI. We further explored the network connectivity after segmenting the FV and BP movements by periods of accelerating and decelerating forces, and applying the IEI parameter to transfer entropy methods.Main results.Conceptualizing that the irregularity in IEI reflects active new information processing, we found the highest irregularity in M1 during BP movement, highest in PPC during FV movement, and the lowest during rest at all sites. Also, connectivity was the strongest from S1 to M1 and from S1 to PPC during FV movement with accelerating force and weakest during rest.Significance. We introduce a novel methodology that utilize the instantaneous gamma frequency (i.e. IEI) parameter in characterizing goal-oriented movements with different sensory goals, and demonstrate its use to inform the directional connectivity within the motor cortical network. This method successfully characterizes different movement types, while providing interpretations to the sensory-motor integration processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肿瘤浸润的脑组织对认知功能的贡献程度尚不清楚。我们在四名患者中使用颅内皮质电图(ECoG)和静息状态功能磁共振(fMRI)成像的独特组合,检验了弥漫性神经胶质瘤浸润的皮质组织参与大规模认知回路的假设。我们还评估了肿瘤浸润组织的功能连接与长期认知结果之间的关系,17例患者的重叠队列。我们观察到在肿瘤浸润的皮质中显著的任务相关的高伽马(70-250Hz)功率调制,以响应增加的认知努力(即,与简单计数相比,开关计数),暗示肿瘤组织在探测执行功能的复杂任务中保留了功能。我们发现,与任务响应电极相对应的肿瘤位置表现出功能连接模式,该模式与涉及执行功能的规范大脑网络显着共同定位。具体来说,我们发现,肿瘤浸润的皮质具有更大的任务相关的高伽马功率调制,更倾向于在功能上与背侧注意网络(DAN)连接.最后,我们证明,肿瘤-DAN连接在更大的神经胶质瘤患者队列中是明显的,并且在目标导向的关注下,它与长期的术后结局相关.总的来说,这项研究提供了融合fMRI-ECoG证据,证明肿瘤浸润的皮质参与了支持健康执行功能的大规模神经认知回路.这些发现强调了在弥漫性神经胶质瘤患者的护理中绘制肿瘤浸润组织的大规模连通性的潜在临床实用性。
    The extent to which tumour-infiltrated brain tissue contributes to cognitive function remains unclear. We tested the hypothesis that cortical tissue infiltrated by diffuse gliomas participates in large-scale cognitive circuits using a unique combination of intracranial electrocorticography (ECoG) and resting-state functional magnetic resonance (fMRI) imaging in four patients. We also assessed the relationship between functional connectivity with tumour-infiltrated tissue and long-term cognitive outcomes in a larger, overlapping cohort of 17 patients. We observed significant task-related high gamma (70-250 Hz) power modulations in tumour-infiltrated cortex in response to increased cognitive effort (i.e., switch counting compared to simple counting), implying preserved functionality of neoplastic tissue for complex tasks probing executive function. We found that tumour locations corresponding to task-responsive electrodes exhibited functional connectivity patterns that significantly co-localised with canonical brain networks implicated in executive function. Specifically, we discovered that tumour-infiltrated cortex with larger task-related high gamma power modulations tended to be more functionally connected to the dorsal attention network (DAN). Finally, we demonstrated that tumour-DAN connectivity is evident across a larger cohort of patients with gliomas and that it relates to long-term postsurgical outcomes in goal-directed attention. Overall, this study contributes convergent fMRI-ECoG evidence that tumour-infiltrated cortex participates in large-scale neurocognitive circuits that support executive function in health. These findings underscore the potential clinical utility of mapping large-scale connectivity of tumour-infiltrated tissue in the care of patients with diffuse gliomas.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:颅内电极通常来自植入后CT伪影。缺少定位低信噪比伪影和高密度电极阵列的自动算法。此外,网格/条的植入会导致大脑变形,导致融合植入后CT和植入前MR图像时的配准误差。脑移位补偿方法将电极坐标投影到皮层,但要么无法产生平滑的解决方案,要么无法解释大脑变形。
    方法:我们首先介绍GridFit,一种基于模型的拟合方法,可同时将所有电极CT伪影定位在网格中,strips,或深度数组。第二,我们提出CEPA,结合基于正交的投影的脑移补偿算法,弹簧网格模型,和空间正则化约束。
    结果:我们在6000个模拟场景上测试了GridFit。CT伪影的定位在困难的情况下表现出稳健的性能,比如噪音,重叠,和高密度植入物(<1mm误差)。来自20名具有挑战性的患者的数据的验证显示电极的99%准确定位(3160/3192)。我们用15名患者的数据测试了CEPA脑移位补偿。投影考虑或简单的机械变形原理,误差<0.4mm。电极间距离在相邻电极之间平滑地变化,而电极间距离的变化随投影距离线性增加。
    方法:GridFit在困难的情况下成功地挑战了可用的方法,并通过保持电极间距离而优于视觉定位。CEPA的登记误差小于成熟替代品的登记误差。此外,5例患者静息状态高频活动建模进一步支持CEPA.
    结论:GridFit和CEPA是记录颅内电极坐标的通用工具,即使在最具挑战性的植入场景中,也能提供高度准确的结果。这些方法在iElectrodes开源工具箱中实现。
    Intracranial electrodes are typically localized from post-implantation CT artifacts. Automatic algorithms localizing low signal-to-noise ratio artifacts and high-density electrode arrays are missing. Additionally, implantation of grids/strips introduces brain deformations, resulting in registration errors when fusing post-implantation CT and pre-implantation MR images. Brain-shift compensation methods project electrode coordinates to cortex, but either fail to produce smooth solutions or do not account for brain deformations.
    We first introduce GridFit, a model-based fitting approach that simultaneously localizes all electrodes\' CT artifacts in grids, strips, or depth arrays. Second, we present CEPA, a brain-shift compensation algorithm combining orthogonal-based projections, spring-mesh models, and spatial regularization constraints.
    We tested GridFit on ∼6000 simulated scenarios. The localization of CT artifacts showed robust performance under difficult scenarios, such as noise, overlaps, and high-density implants (<1 mm errors). Validation with data from 20 challenging patients showed 99% accurate localization of the electrodes (3160/3192). We tested CEPA brain-shift compensation with data from 15 patients. Projections accounted for simple mechanical deformation principles with < 0.4 mm errors. The inter-electrode distances smoothly changed across neighbor electrodes, while changes in inter-electrode distances linearly increased with projection distance.
    GridFit succeeded in difficult scenarios that challenged available methods and outperformed visual localization by preserving the inter-electrode distance. CEPA registration errors were smaller than those obtained for well-established alternatives. Additionally, modeling resting-state high-frequency activity in five patients further supported CEPA.
    GridFit and CEPA are versatile tools for registering intracranial electrode coordinates, providing highly accurate results even in the most challenging implantation scenarios. The methods are implemented in the iElectrodes open-source toolbox.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    描述基于感觉运动节律的脑机接口(SMR-BCI)用于获取与运动图像相关的大脑信号并将其转换为机器控制命令,绕过通常的中枢神经系统输出。选择最佳的外部变量配置可以最大化健康和残疾人的SMR-BCI性能。现在,当BCI的目标是在严格监管的实验室环境之外的日常使用时,这种性能尤为重要。在这篇评论文章中,我们总结并批判性地评估了当前有关外部变量对SMR-BCI绩效影响的知识体系。在评估SMR-BCI性能与外部变量之间的关系时,我们将它们广泛地描述为较少依赖BCI用户并且源自用户之外的元素。这些元素包括BCI类型等因素,干扰物,培训,视觉和听觉反馈,虚拟现实和磁电反馈,本体感觉和触觉反馈,脑电图(EEG)系统的仔细组装和EEG电极的定位以及与记录相关的伪影。在这篇综述论文的最后,关于外部变量对SMR-BCI绩效影响的研究,提出了未来的发展方向。我们相信,我们的批判性审查将对学术BCI科学家和开发人员以及在BCI领域工作的临床专业人员以及SMR-BCI用户具有价值。
    Description Sensorimotor rhythm-based brain-computer interfaces (SMR-BCIs) are used for the acquisition and translation of motor imagery-related brain signals into machine control commands, bypassing the usual central nervous system output. The selection of optimal external variable configuration can maximize SMR-BCI performance in both healthy and disabled people. This performance is especially important now when the BCI is targeted for everyday use in the environment beyond strictly regulated laboratory settings. In this review article, we summarize and critically evaluate the current body of knowledge pertaining to the effect of the external variables on SMR-BCI performance. When assessing the relationship between SMR-BCI performance and external variables, we broadly characterize them as elements that are less dependent on the BCI user and originate from beyond the user. These elements include such factors as BCI type, distractors, training, visual and auditory feedback, virtual reality and magneto electric feedback, proprioceptive and haptic feedback, carefulness of electroencephalography (EEG) system assembling and positioning of EEG electrodes as well as recording-related artifacts. At the end of this review paper, future developments are proposed regarding the research into the effects of external variables on SMR-BCI performance. We believe that our critical review will be of value for academic BCI scientists and developers and clinical professionals working in the field of BCIs as well as for SMR-BCI users.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    触觉和运动相关的体感知觉对我们的日常生活和生存至关重要。尽管初级体感皮层被认为是体感感知的关键结构,各种皮层下游区域也参与体感感知处理。然而,关于这些下游区域的皮层网络是否可以根据每种感知而分离,尤其是在人类。我们通过将来自直接皮层刺激(DCS)的数据与来自触觉刺激和运动任务期间引起的高伽马带(HG)的数据相结合来解决此问题。我们发现,人工体感知觉不仅来自与传统体感相关的区域,例如初级和次级体感皮层,而且还来自包括上/下顶叶小叶和运动前皮层在内的广泛网络。有趣的是,包括顶叶上小叶和背侧运动前皮层在内的额顶区背侧的DCS通常会引起与运动相关的体感,而在腹侧,包括下顶叶小叶和腹侧运动前皮层通常会引起触感。此外,运动和被动触觉刺激任务的HG映射结果显示,HG和DCS功能图之间的空间分布具有相当大的相似性。我们的发现表明,可以隔离触觉和运动相关感知的宏观神经处理。
    Tactile and movement-related somatosensory perceptions are crucial for our daily lives and survival. Although the primary somatosensory cortex is thought to be the key structure of somatosensory perception, various cortical downstream areas are also involved in somatosensory perceptual processing. However, little is known about whether cortical networks of these downstream areas can be dissociated depending on each perception, especially in human. We address this issue by combining data from direct cortical stimulation (DCS) for eliciting somatosensation and data from high-gamma band (HG) elicited during tactile stimulation and movement tasks. We found that artificial somatosensory perception is elicited not only from conventional somatosensory-related areas such as the primary and secondary somatosensory cortices but also from a widespread network including superior/inferior parietal lobules and premotor cortex. Interestingly, DCS on the dorsal part of the fronto-parietal area including superior parietal lobule and dorsal premotor cortex often induces movement-related somatosensations, whereas that on the ventral one including inferior parietal lobule and ventral premotor cortex generally elicits tactile sensations. Furthermore, the HG mapping results of the movement and passive tactile stimulation tasks revealed considerable similarity in the spatial distribution between the HG and DCS functional maps. Our findings showed that macroscopic neural processing for tactile and movement-related perceptions could be segregated.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Preprint
    精确的电极定位对于最大限度地利用颅内脑电图数据是重要的。电极通常来自植入后的CT伪影,但是由于信噪比低,算法可能会失败,无关的文物,或高密度电极阵列。最小化这些错误通常需要耗时的视觉定位,并且仍然可能导致不准确的定位。此外,网格和条带的手术植入通常会引入非线性脑变形,当植入后的CT图像与植入前的MRI图像融合时,会导致解剖配准误差。目前有几种投影方法,但是它们要么无法产生平滑的解决方案,要么无法解释大脑变形。为了解决这些缺点,我们提出了两种新的算法用于颅内电极的解剖配准,这两种算法几乎是全自动的,并提供了高度精确的结果.我们首先介绍GridFit,一种同时定位网格中所有接触的算法,strips,或深度阵列通过拟合柔性模型到电极\'CT伪影。我们观察到定位误差小于一毫米(低于8%相对于电极间的距离)和鲁棒性能存在的噪声,无关的文物,和高密度植入物,当我们运行6000模拟场景时。此外,我们用20例颅内患者的真实数据验证了该方法.作为第二个注册步骤,我们介绍CEPA,一种结合了基于正交投影的脑移补偿算法,弹簧网格模型,和空间正则化约束。用15名患者的真实数据进行测试时,解剖学配准误差小于已建立的替代方案所获得的误差。此外,CEPA同时考虑了简单的机械变形原理,这是不可能与其他可用的方法。投影坐标的电极间距离在相邻电极之间平滑变化,而电极间距离的变化随投影距离线性增加。此外,在额外的验证过程中,我们发现,对5例患者的静息状态高频活动(75-145Hz)进行建模进一步支持了我们的新算法.一起,GridFit和CEPA构成了一套用于硬膜下网格注册的多功能工具,strip,和深度电极坐标,即使在最具挑战性的植入场景中也能提供高度准确的结果。这里介绍的方法在iElectrodes开源工具箱中实现,使它们的使用变得简单,可访问,并且直接与其他用于分析电生理数据的流行工具箱集成。
    Precise electrode localization is important for maximizing the utility of intracranial EEG data. Electrodes are typically localized from post-implantation CT artifacts, but algorithms can fail due to low signal-to-noise ratio, unrelated artifacts, or high-density electrode arrays. Minimizing these errors usually requires time-consuming visual localization and can still result in inaccurate localizations. In addition, surgical implantation of grids and strips typically introduces non-linear brain deformations, which result in anatomical registration errors when post-implantation CT images are fused with the pre-implantation MRI images. Several projection methods are currently available, but they either fail to produce smooth solutions or do not account for brain deformations. To address these shortcomings, we propose two novel algorithms for the anatomical registration of intracranial electrodes that are almost fully automatic and provide highly accurate results. We first present GridFit, an algorithm that simultaneously localizes all contacts in grids, strips, or depth arrays by fitting flexible models to the electrodes\' CT artifacts. We observed localization errors of less than one millimeter (below 8% relative to the inter-electrode distance) and robust performance under the presence of noise, unrelated artifacts, and high-density implants when we ran ~6000 simulated scenarios. Furthermore, we validated the method with real data from 20 intracranial patients. As a second registration step, we introduce CEPA, a brain-shift compensation algorithm that combines orthogonal-based projections, spring-mesh models, and spatial regularization constraints. When tested with real data from 15 patients, anatomical registration errors were smaller than those obtained for well-established alternatives. Additionally, CEPA accounted simultaneously for simple mechanical deformation principles, which is not possible with other available methods. Inter-electrode distances of projected coordinates smoothly changed across neighbor electrodes, while changes in inter-electrode distances linearly increased with projection distance. Moreover, in an additional validation procedure, we found that modeling resting-state high-frequency activity (75-145 Hz ) in five patients further supported our new algorithm. Together, GridFit and CEPA constitute a versatile set of tools for the registration of subdural grid, strip, and depth electrode coordinates that provide highly accurate results even in the most challenging implantation scenarios. The methods presented here are implemented in the iElectrodes open-source toolbox, making their use simple, accessible, and straightforward to integrate with other popular toolboxes used for analyzing electrophysiological data.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    带通滤波器在ECoG信号处理中起着核心作用。常用的频带,如阿尔法,beta,伽马带可以反映大脑的正常节奏。然而,通用预定义的频带对于特定任务可能不是最佳的。特别是伽马带通常覆盖很宽的频率范围(即,30-200Hz),可能太粗糙,无法捕获出现在窄带中的特征。理想的选择是实时和动态地为特定任务找到最佳频带。为了解决这个问题,我们提出了一种自适应带滤波器,以数据驱动的方式选择有用的频带。具体来说,我们利用同步神经元和锥体神经元在神经元振荡的耦合工作机制的相位-振幅耦合(PAC),其中较慢振荡的相位调制较快振荡的振幅,为了帮助定位伽马范围内的精细频带,以特定于任务和特定于个人的方式。因此,可以从ECoG信号中更精确地提取信息,以提高神经解码性能。基于此,提出了一种端到端解码器(PACNet),以在统一的框架中构造具有自适应滤波器组的神经解码应用程序。实验表明,PACNet可以在不同任务下普遍提高神经解码性能。
    Bandpass filters play a core role in ECoG signal processing. Commonly used frequency bands such as alpha, beta, and gamma bands can reflect the normal rhythm of the brain. However, the universally predefined bands might not be optimal for a specific task. Especially the gamma band usually covers a wide frequency span (i.e., 30-200 Hz) which can be too coarse to capture features that appear in narrow bands. An ideal option is to find the optimal frequency bands for specific tasks in real-time and dynamically. To tackle this problem, we propose an adaptive band filter that selects the useful frequency band in a data-driven way. Specifically, we leverage the phase-amplitude coupling (PAC) of the coupled working mechanism of synchronizing neuron and pyramidal neurons in neuronal oscillations, in which the phase of slower oscillations modulates the amplitude of faster ones, to help locate the fine frequency bands from the gamma range, in a task-specific and individual-specific way. Thus, the information can be more precisely extracted from ECoG signals to improve neural decoding performance. Based on this, an end-to-end decoder (PACNet) is proposed to construct a neural decoding application with adaptive filter banks in a uniform framework. Experiments show that PACNet can improve neural decoding performance universally with different tasks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本文介绍了NeuroImage文章“变形大脑中皮质脑电图向前问题的患者特定解决方案”[1]中报告的研究中应用的数据集,可从Zenodo数据存储库(https://zenodo.org/record/77631)下载[2]。回顾性地从波士顿儿童医院获得了一名12岁女性癫痫患者的术前结构和弥散加权磁共振(MR)和术后计算机断层扫描(CT)图像。我们使用这些图像在西澳大利亚大学的智能系统医学实验室使用SlicerCBM进行分析[3],我们的3D切片器医学成像平台的开源软件扩展。作为分析的一部分,我们处理图像以提取患者特定的大脑几何结构;创建计算网格,包括用于生物力学模型的无网格解的四面体网格和用于皮质脑电图正向问题的有限元解的规则六面体网格;使用基于生物力学的图像扭曲来预测术后MRI和DTI,其对应于通过放置硬膜下电极而变形的大脑配置;并使用原始术前数据和术后图像来解决患者特定的皮质脑电图正向问题以计算患者头部内的电势分布。此数据集中使用的成熟且开源的文件格式,包括图像的近原始光栅数据(NRRD)文件,曲面几何图形的STL文件,和计算网格的可视化工具包(VTK)文件,允许其他研究小组轻松地重复使用本文提供的数据,以解决由于植入硬膜下网格电极而导致的脑移位的皮质电图向前问题。
    This article describes the dataset applied in the research reported in NeuroImage article \"Patient-specific solution of the electrocorticography forward problem in deforming brain\" [1] that is available for download from the Zenodo data repository (https://zenodo.org/record/7687631) [2]. Preoperative structural and diffusion-weighted magnetic resonance (MR) and postoperative computed tomography (CT) images of a 12-year-old female epilepsy patient under evaluation for surgical intervention were obtained retrospectively from Boston Children\'s Hospital. We used these images to conduct the analysis at The University of Western Australia\'s Intelligent Systems for Medicine Laboratory using SlicerCBM [3], our open-source software extension for the 3D Slicer medical imaging platform. As part of the analysis, we processed the images to extract the patient-specific brain geometry; created computational grids, including a tetrahedral grid for the meshless solution of the biomechanical model and a regular hexahedral grid for the finite element solution of the electrocorticography forward problem; predicted the postoperative MRI and DTI that correspond to the brain configuration deformed by the placement of subdural electrodes using biomechanics-based image warping; and solved the patient-specific electrocorticography forward problem to compute the electric potential distribution within the patient\'s head using the original preoperative and predicted postoperative image data. The well-established and open-source file formats used in this dataset, including Nearly Raw Raster Data (NRRD) files for images, STL files for surface geometry, and Visualization Toolkit (VTK) files for computational grids, allow other research groups to easily reuse the data presented herein to solve the electrocorticography forward problem accounting for the brain shift caused by implantation of subdural grid electrodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号