electrochemical performances

  • 文章类型: Journal Article
    镁-锂离子混合电池(MLIB)由于无枝晶且低成本的镁阳极与锂离子存储阴极的组合而获得了显著的关注。然而,高性能阴极的缺乏严重阻碍了它们的发展,受电解质较低工作电压的限制。在这里,固定在柔性碳布(VMS@CC)上的钒二硫化钼纳米片被构造为MLIB的高性能阴极,同时继承了高电压VS2和高容量MoS2的电化学性能。通过调整V和Mo原子比,用于MLIB的VMS@CC阴极在50mAg-1时具有1.07V的高工作电压,可提供创纪录的275.5Whkg-1的最大能量密度。同时,在导电碳布基体的协同作用下,丰富的异质界面和缺陷,以及扩大的层间间距,VMS@CC阴极显示出优越的倍率能力和长期循环稳定性。非原位分析表明,VMS纳米片阴极在MLIB中表现出Li/Mg2共插入/提取机制,在老化过程中有机物质原位插入混合电解质。本文制造的柔性阴极提供了对用于MLIB的高能量密度阴极的构造的新见解。
    Magnesium-lithium-ion hybrid batteries (MLIBs) have gained significant attention since the combination of a dendrite-free and low-cost magnesium anode with lithium-ion storage cathodes. However, the lack of high-performance cathodes has severely hindered their development, limited by the lower operating voltages of electrolytes. Herein, vanadium molybdenum disulfide nanosheets anchoring on flexible carbon cloth (VMS@CC) are constructed as high-performance cathodes for MLIBs, which inherit the electrochemical properties of high-voltage VS2 and high-capacity MoS2, simultaneously. By adjusting the V and Mo atomic ratio, the VMS@CC cathode for MLIBs delivers a record maximum energy density of 275.5 Wh kg-1 with a high working voltage of 1.07 V at 50 mA g-1. Meanwhile, under the synergistic effects of the conductive carbon cloth matrix, abundant hetero-interfaces and defects, as well as expanded interlayer spacing, the VMS@CC cathode displays superior rate capability and long-term cycling stability. Ex situ analyses demonstrate the VMS nanosheets cathode exhibits a Li+/Mg2+ co-insertion/extraction mechanism in MLIBs, following the in situ insertion of organic species in the hybrid electrolyte during the aging process. The fabricated flexible cathode herein provides a new insight into the construction of high-energy density cathodes for MLIBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    闭孔在提高硬碳(HC)阳极的钠储存能力中起着关键作用,然而,它们的形成机理以及在聚合物衍生的HC中在分子水平上的有效调制策略仍然缺乏。在这项工作中,空间位阻效应首次被提出通过在前体中的主链内和主链之间接枝芳环而在聚合物衍生的HC中产生闭孔。实验数据和理论计算表明,芳环侧基的空间位阻效应可以增加聚合物前体的主链刚度和内部自由体积。这可以防止过度石墨化,并有助于在碳化过程中形成闭孔。因此,制备的HC阳极在0.1C下显示出340.3mAh/g的显着增强的放电容量,改善的倍率性能(在5C时为210.7mAh/g)以及增强的循环稳定性(在2C下1000次循环中为86.4%)。这项工作通过空间位阻工程为闭孔的形成机制提供了新的见解,这可以为开发用于钠离子电池的高性能聚合物衍生HC阳极提供启示。
    The closed pores play a critical role in improving the sodium storage capacity of hard carbon (HC) anode, however, their formation mechanism as well as the efficient modulation strategy at molecular level in the polymer-derived HCs is still lacking. In this work, the steric hindrance effect has been proposed to create closed pores in the polymer-derived HCs for the first time through grafting the aromatic rings within and between the main chains in the precursor. The experimental data and theoretical calculation demonstrate that steric-hindrance effect from the aromatic ring side group can increase backbone rigidity and the internal free volumes in the polymer precursor, which can prevent the over graphitization and facilitate the formation of closed pores during the carbonization process. As a result, the as-prepared HC anode exhibits a remarkably enhanced discharge capacity of 340.3 mAh/g at 0.1 C, improved rate performance (210.7 mAh/g at 5 C) as well as boosted cycling stability (86.4 % over 1000 cycles at 2 C). This work provides a new insight into the formation mechanisms of closed pores via steric hindrance engineering, which can shed light on the development of high-performance polymer-derived HC anode for sodium-ion batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于越来越多的环境问题和化石燃料的快速枯竭,创建创新和环保的储能系统至关重要。使用由生物质产生的多孔碳复合材料进行储能在研究界引起了很多关注。这主要是由于环保性质,自然界中丰富的可用性,可访问性,负担能力,和来自各种生物材料的宏观/中观/微孔碳的长期生存能力。还考虑了对称超级电容器的能量密度,值在5.1和138.4Wh/kg之间。在这次审查中,我们研究生物质的基本结构以及它们如何影响多孔碳的合成。讨论了不同结构多孔碳材料对电化学性能的影响并进行了分析。在最近的事态发展中,包括燃料电池在内的各个领域都取得了重要进展,碳捕获,以及生物质衍生的碳质纳米颗粒的利用。值得注意的是,我们的研究深入研究了这些材料固有的创新能量转换和存储潜力。这项全面的调查旨在通过描述当前的进展并预测制造源自生物质的多孔碳复合材料的潜在挑战,为即将到来的储能研究工作奠定基础。
    Creating an innovative and environmentally friendly energy storage system is of vital importance due to the growing number of environmental problems and the fast exhaustion of fossil fuels. Energy storage using porous carbon composites generated from biomass has attracted a lot of attention in the research community. This is primarily due to the environmentally friendly nature, abundant availability in nature, accessibility, affordability, and long-term viability of macro/meso/microporous carbon sourced from a variety of biological materials. Extensive information on the design and the building of an energy storage device that uses supercapacitors was a part of this research. This study examines both porous carbon electrodes (ranging from 44 to 1050 F/g) and biomasses with a large surface area (between 215 and 3532 m2/g). Supposedly, these electrodes have a capacitive retention performance of about 99.7 percent after 1000 cycles. The energy density of symmetric supercapacitors is also considered, with values between 5.1 and 138.4 Wh/kg. In this review, we look at the basic structures of biomass and how they affect porous carbon synthesis. It also discusses the effects of different structured porous carbon materials on electrochemical performance and analyzes them. In recent developments, significant steps have been made across various fields including fuel cells, carbon capture, and the utilization of biomass-derived carbonaceous nanoparticles. Notably, our study delves into the innovative energy conversion and storage potentials inherent in these materials. This comprehensive investigation seeks to lay the foundation for forthcoming energy storage research endeavors by delineating the current advancements and anticipating potential challenges in fabricating porous carbon composites sourced from biomass.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    含水锌离子电池(AZIB)是锂离子电池的最引人注目的替代品之一,由于其固有的安全性和经济可行性。为了响应对绿色和可持续能源存储解决方案日益增长的需求,具有廉价起始材料的可扩展性和使用后生物降解潜力的有机电极已成为AZIB的突出选择。尽管在AZIB中具有电化学性能的有机分子取得了可喜的进展,由于潜在的复杂电化学,这项研究仍处于起步阶段,受到某些问题的阻碍。本文详细讨论了设计具有高比容量和长循环寿命的AZIB有机电极材料的策略。具体来说,我们强调不同氧化还原活性结构的独特电化学,以深入了解其工作机制。此外,我们强调分子大小/尺寸对电化学性能的深远影响的重要性。最后,从未来AZIB的发展角度讨论了挑战和观点。我们希望在我们的背景下对AZIB的有机电极材料提供有价值的评估,并为高性能AZIB的合理设计提供启发。
    Aqueous zinc-ion batteries (AZIBs) are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability. In response to the growing demand for green and sustainable energy storage solutions, organic electrodes with the scalability from inexpensive starting materials and potential for biodegradation after use have become a prominent choice for AZIBs. Despite gratifying progresses of organic molecules with electrochemical performance in AZIBs, the research is still in infancy and hampered by certain issues due to the underlying complex electrochemistry. Strategies for designing organic electrode materials for AZIBs with high specific capacity and long cycling life are discussed in detail in this review. Specifically, we put emphasis on the unique electrochemistry of different redox-active structures to provide in-depth understanding of their working mechanisms. In addition, we highlight the importance of molecular size/dimension regarding their profound impact on electrochemical performances. Finally, challenges and perspectives are discussed from the developing point of view for future AZIBs. We hope to provide a valuable evaluation on organic electrode materials for AZIBs in our context and give inspiration for the rational design of high-performance AZIBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    全固态氟离子电池(ASSFIB)由于其低成本而显示出作为储能设备的巨大潜力,优越的安全性,和高能量密度。然而,F-导体的离子导电性差,大体积膨胀,缺乏合适的阳极会抑制它们的发展。在这项工作中,成功合成并表征了不同相(β-和γ-PbSnF4)的PbSnF4固体电解质。由β-PbSnF4电解质组成的ASSFIB,BiF3阴极,和微米/纳米尺寸(µ-/n-)Sn阳极,表现出巨大的能力。与μ-Sn阳极相比,具有纳米结构的n-Sn阳极在BiF3/β-PbSnF4/Sn电池中表现出优异的电池性能。优化的电池在8mAg-1时提供了181.3mAhg-1的高初始放电容量,并且可以在40mAg-1时可逆地循环,在120次循环后具有超过100.0mAhg-1的高放电容量在室温下。此外,它显示了超过90.0mAhg-1的高放电容量,在-20°C下超过100次循环具有优异的循环性。详细的表征已经证实,减小Sn颗粒尺寸和提高外部压力对于在Sn阳极中实现良好的脱氟/氟化行为至关重要。这些发现为在不同工作温度下设计具有高容量和优异循环性能的ASSFIB铺平了道路。
    All-solid-state fluoride ion batteries (ASSFIBs) show remarkable potential as energy storage devices due to their low cost, superior safety, and high energy density. However, the poor ionic conductivity of F- conductor, large volume expansion, and the lack of a suitable anode inhibit their development. In this work, PbSnF4 solid electrolytes in different phases (β- and γ-PbSnF4) are successfully synthesized and characterized. The ASSFIBs composed of β-PbSnF4 electrolytes, a BiF3 cathode, and micrometer/nanometer size (µ-/n-) Sn anodes, exhibit substantial capacities. Compared to the μ-Sn anode, the n-Sn anode with nanostructure exhibits superior battery performance in the BiF3/β-PbSnF4/Sn battery. The optimized battery delivers a high initial discharge capacity of 181.3 mAh g-1 at 8 mA g-1 and can be reversibly cycled at 40 mA g-1 with a high discharge capacity of over 100.0 mAh g-1 after 120 cycles at room temperature. Additionally, it displays high discharge capacities over 90.0 mAh g-1 with excellent cyclability over 100 cycles under -20 °C. Detailed characterization has confirmed that reducing Sn particle size and boosting external pressure are crucial for achieving good defluorination/fluorination behaviors in the Sn anode. These findings pave the way to designing ASSFIBs with high capacities and superior cyclability under different operating temperatures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    LiNi0.8Mn0.1Co0.1O2(NMC811)是下一代锂离子电池(LIBs)最有前途的正极材料。然而,材料在空气暴露期间的化学不稳定性导致在表面上形成残留的锂化合物(RLCs:LiOH和Li2CO3),并抑制其实际应用。这里,我们提出了一种化学转化工艺,通过利用它们并在含有Li3PO4,LiMn2O4和LiMnPO4相的NMC811表面形成混合涂层来去除RLCs,产生多方面的好处。表面上的混合层保护材料免受不期望的副反应。它通过在3.0-4.3V的工作电压下以0.5C的速率在300次循环后保留其初始容量的80%和500次循环后保留其66%,从而提高了NMC811的循环寿命。该过程通过稳定电极-电解质界面来实现高电压(4.7VvsLi/Li)操作,降低阳离子无序度和相变的电压极化,提高库仑效率和离子扩散动力学,并最大限度地减少二次粒子裂纹的形成在长期循环。事实上,涂层减少了RLC的有害影响,离开表面以获得更好的Li+传输,从而显著提高了NMC811的电化学性能。
    LiNi0.8Mn0.1Co0.1O2 (NMC811) is the most promising cathode material for next-generation lithium-ion batteries (LIBs). However, the chemical instability of the material during air exposure leads to the formation of residual lithium compounds (RLCs: LiOH and Li2CO3) on the surface and inhibits its practical application. Here, we propose a chemical conversion process to remove RLCs by utilizing them and forming a hybrid coating layer on the surface of NMC811 that contains Li3PO4, LiMn2O4, and LiMnPO4 phases, yielding multifaceted benefits. The hybrid layer on the surface protects the material from undesirable side reactions. It improves the cycle life of NMC811 by retaining 80% of its initial capacity after 300 cycles and 66% after 500 cycles at a 0.5C rate in the operating voltage of 3.0-4.3 V. The process enables high-voltage (4.7 V vs Li+/Li) operation by stabilizing the electrode-electrolyte interface, reduces the degree of cationic disorder and the voltage polarization for phase transitions, improves Coulombic efficiency and ion diffusion kinetics, and minimizes the secondary particle crack formation over long-term cycling. In fact, the coating reduces the detrimental effects of RLCs, leaves the surface for better Li+ transport, and hence significantly improves the electrochemical performance of NMC811.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    LiNO3作为一种有前途的电解质添加剂引起了广泛的关注,以调节Li沉积行为,因为它可以形成有利的Li3N,LiNxOy物种提高了界面稳定性。然而,在碳酸盐基电解质中较差的溶解性限制了其在高压锂金属电池中的应用。在这里,在Li表面合理设计了由LiNO3和PMMA组成的人工复合层(简称PML)。在循环过程中,PML层充当LiNO3逐渐释放到电解质中的储库,保证SEI层的稳定性以实现均匀的Li沉积。PMMA基质不仅连接含氮物种以获得均匀的离子电导率,而且还可以与Li配位以快速Li离子迁移。导致均匀的锂离子通量和无枝晶形态。因此,即使在20mAcm-2(>570h)的超高电流密度和10mAhcm-2(>1200h)的大面积容量下,Li金属阳极也可以实现稳定的无枝晶电镀/剥离行为。此外,使用PML-Li阳极的Li||LiFePO4全电池经历2000个循环的稳定循环,具有94.8%的高容量保持率。这种简便的策略将扩大LiNO3在用于实际LMB的碳酸盐基电解质中的潜在应用。
    LiNO3 has attracted intensive attention as a promising electrolyte additive to regulate Li deposition behavior as it can form favorable Li3N, LiNxOy species to improve the interfacial stability. However, the inferior solubility in carbonate-based electrolyte restricts its application in high-voltage Li metal batteries. Herein, an artificial composite layer (referred to as PML) composed of LiNO3 and PMMA is rationally designed on Li surface. The PML layer serves as a reservoir for LiNO3 release gradually to the electrolyte during cycling, guaranteeing the stability of SEI layer for uniform Li deposition. The PMMA matrix not only links the nitrogen-containing species for uniform ionic conductivity but also can be coordinated with Li for rapid Li ions migration, resulting in homogenous Li-ion flux and dendrite-free morphology. As a result, stable and dendrite-free plating/stripping behaviors of Li metal anodes are achieved even at an ultrahigh current density of 20 mA cm-2 (>570 h) and large areal capacity of 10 mAh cm-2 (>1200 h). Moreover, the Li||LiFePO4 full cell using PML-Li anode undergoes stable cycling for 2000 cycles with high-capacity retention of 94.8%. This facile strategy will widen the potential application of LiNO3 in carbonate-based electrolyte for practical LMBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    锂金属近表面区域的浓度差是锂枝晶生长的主要原因。解决这一问题将是实现高性能锂金属电池(LMB)的关键。在这里,我们构建了硝酸锂(LiNO3)注入的电活性β相聚偏氟乙烯-共-六氟丙烯(PVDF-HFP)结晶多晶型层(PHL)。带负电的聚合物链在表面上获得锂离子以形成锂离子带电通道。这些通道充当可持续释放锂离子以补偿电解质的离子通量的储库,减少锂枝晶的生长。拉伸的分子通道还可以加速Li离子的传输。综合效应可在锂(Li)|铜(Cu)电池中进行250次循环时实现97.0%的高库仑效率,并在3mAcm-2下在2000h内实现稳定的对称电镀/剥离行为,并具有50%的超高Li利用率。此外,与PHL-Cu@Li阳极和LiFePO4阴极耦合的全电池表现出长期循环稳定性,900次循环后的高容量保留率为95.9%。令人印象深刻的是,与LiNi0.87Co0.1Mn0.03O2配对的全电池即使在超低N/P比为0.83的苛刻条件下,在100次循环后仍保持170.0mAhg-1的放电容量,容量保留率为84.3%。这种简便的策略将扩大LiNO3在酯基电解质中的潜在应用,用于实际的高压LMB。
    The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth. Resolving this issue will be key to achieving high-performance lithium metal batteries (LMBs). Herein, we construct a lithium nitrate (LiNO3)-implanted electroactive β phase polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) crystalline polymorph layer (PHL). The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels. These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes, decreasing the growth of lithium dendrites. The stretched molecular channels can also accelerate the transport of Li ions. The combined effects enable a high Coulombic efficiency of 97.0% for 250 cycles in lithium (Li)||copper (Cu) cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm-2 with ultrahigh Li utilization of 50%. Furthermore, the full cell coupled with PHL-Cu@Li anode and LiFePO4 cathode exhibits long-term cycle stability with high-capacity retention of 95.9% after 900 cycles. Impressively, the full cell paired with LiNi0.87Co0.1Mn0.03O2 maintains a discharge capacity of 170.0 mAh g-1 with a capacity retention of 84.3% after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83. This facile strategy will widen the potential application of LiNO3 in ester-based electrolyte for practical high-voltage LMBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    合成了FeOOH/Zn(OH)2/CoS(FZC)纳米复合材料,并在超级电容器和催化制氢中显示出出色的电化学性能。比面积电容达到17.04Fcm-2,比FeOOH/Zn(OH)2(FZ)衬底的电容高十倍以上:1.58Fcm-2)。FZC纳米复合材料还表现出优异的循环稳定性,在10.000次长期循环后,初始容量保持率为93.6%。在UOR(尿素氧化反应)||HER(析氢反应)耦合系统中以FZC作为阳极和阴极组装的电解池(FZC//FZC)仅需要1.353V的电池电压来驱动10mAcm-2的电流密度。尤其是,FZC纳米复合材料的电化学性能在磁场中得到增强,并基于电极-电解质界面(EEI)的Stern双层模型提出了机理。更多的电解质离子在开尔文力作用下到达FZC电极材料表面,此外,FZC纳米复合材料的Warburg阻抗在磁场作用下降低,这导致能量储存和尿素氧化反应的行为增强。
    The FeOOH/Zn(OH)2/CoS (FZC) nanocomposites are synthesized and show the outstanding electrochemical properties in both supercapacitor and catalytic hydrogen production. The specific area capacitance reaches 17.04 F cm-2, which is more than ten times higher than that of FeOOH/Zn(OH)2 (FZ) substrate: 1.58 F cm-2). FZC nanocomposites also exhibit the excellent cycling stability with an initial capacity retention rate of 93.6% after 10 000 long-term cycles. The electrolytic cell (FZC//FZC) assembled with FZC as both anode and cathode in the UOR (urea oxidation reaction)|| HER (hydrogen evolution reaction) coupled system requires a cell voltage of only 1.453 V to drive a current density of 10 mA cm-2. Especially, the electrochemical performances of FZC nanocomposites are enhanced in magnetic field, and the mechanism is proposed based on Stern double layer model at electrode-electrolyte interface (EEI). More electrolyte ions reach the surface of FZC electrode material under Kelvin force, moreover, the warburg impedance of FZC nanocomposites decrease under magnetic field action, which results in the enhanced behaviors for both the energy storage and urea oxidation reaction .
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    具有独特层状结构的层状双氢氧化物(LDHs)具有出色的理论电容。然而,电活性位点和阳离子物种的受限可用性限制了它们在超级电容器中实际实施的可行性。大多数报道的材料是双金属氢氧化物,对三金属氢氧化物的研究较少。在这里,以CoZn金属有机骨架(CoZn-MOFs)为模板,合成了中空十二面体NiCoZn-LDH。详细研究了其形态和组成。同时,还研究了第三组分的量对所得NiCoZn-LDH结构的影响。受益于其良好的结构和组成属性,离子和电子的有效转移,NiCoZn-LDH-200在0.5A/g时显示出1003.3Fg-1的突出比电容。此外,利用NiCoZn-LDH-200作为正极和活性炭(AC)作为负极的柔性非对称超级电容器显示出良好的电化学性能,包括0.5A/g时184.7Fg-1的显著比电容,在65.66Whkg-1的高能量密度下的功率密度为368.21Wkg-1,在3985.97Wkg-1的高功率密度下的能量密度为31.78Whkg-1,在5A/g的8000次循环后的电容保持率为92%,和90%的良好的电容保留500次弯曲后。本文提出的模板法可以有效解决材料易堆积的问题,提高材料的电化学性能,具有广阔的研究前景。
    Layered double hydroxides (LDHs) with unique layered structure have excellent theoretical capacitance. Nevertheless, the constrained availability of electrically active sites and cationic species curtails their feasibility for practical implementation within supercapacitors. Most of the reported materials are bimetallic hydroxides, and fewer studies are on trimetallic hydroxides. In here, the hollow dodecahedron NiCoZn-LDH is synthesized using CoZn metal-organic frameworks (CoZn-MOFs) as template. Its morphology and composition are studied in detail. Concurrently, the effect of the amount of third component on the resulting structure of NiCoZn-LDH is also researched. Benefiting from its favorable structural and compositional attributes to efficient transfer of ions and electrons, NiCoZn-LDH-200 demonstrates outstanding specific capacitance of 1003.3F g-1 at 0.5 A/g. Furthermore, flexible asymmetric supercapacitor utilizing NiCoZn-LDH-200 as the positive electrode and activated carbon (AC) as the negative electrode reveals favorable electrochemical performances, including a notable specific capacitance of 184.7F g-1 at 0.5 A/g, a power density of 368.21 W kg-1 at a high energy density of 65.66 Wh kg-1, an energy density of 31.78 Wh kg-1 at a high power density of 3985.97 W kg-1, a capacitance retention of 92 % after 8000 cycles at 5 A/g, and a good capacitance retention of 90 % after 500 cycles of bending. The template method presented herein can effectively solve the problem of easy accumulation and improve the electrochemical properties of the materials, which exhibits a broad research prospect.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号