electrocatalytic nitrogen reduction

  • 文章类型: Journal Article
    在本文中,通过简单的原位沉积方法制备了Ti3C2TxMXene/Cu-Bi双金属硫化物(Ti3C2Tx/BiCuS2.5)复合材料,用于电催化氮还原反应(eNRR)。与Ti3C2Tx/Bi2S3和Ti3C2Tx/CuS相比,Ti3C2Tx/BiCuS2.5的eNRR性能显著提高。结果表明,Ti3C2Tx/BiCuS2.5的NH3产率为62.57μgh-1mg-1cat。在0.1MNa2SO4中-0.6V与可逆氢电极,法拉第效率(FE)达到67.69%,优于Ti3C2Tx/CuS(NH3产率:52.26μgh-1mg-1cat。,FE:34.15%)和Ti3C2Tx/Bi2S3(NH3产率:54.04μgh-1mg-1cat。,FE:37.38%)。根据密度泛函理论计算,在Ti3C2Tx/BiCuS2.5表面的eNRR是交替的途径。15N的1HNMR实验证明,在实验中产生的NH3的N来源于在实验过程中通过的N2。
    In this paper, Ti3C2Tx MXene/Cu-Bi bimetallic sulfide (Ti3C2Tx/BiCuS2.5) composites were prepared by a simple in situ deposition method for electrocatalytic nitrogen reduction reaction (eNRR). Compared to Ti3C2Tx/Bi2S3 and Ti3C2Tx/CuS, the eNRR performance of Ti3C2Tx/BiCuS2.5 is significantly improved. The results show that Ti3C2Tx/BiCuS2.5 exhibits a NH3 yield of 62.57 μg h-1 mg-1cat. in 0.1 M Na2SO4 at -0.6 V vs reversible hydrogen electrode, and the Faradaic efficiency (FE) reaches 67.69%, which is better than that of Ti3C2Tx/CuS (NH3 yield: 52.26 μg h-1 mg-1cat., FE: 34.15%) and Ti3C2Tx/Bi2S3 (NH3 yield: 54.04 μg h-1 mg-1cat., FE: 37.38%). According to density functional theory calculations, the eNRR at the Ti3C2Tx/BiCuS2.5 surface is the alternating pathway. The 1H NMR experiment of 15N proves that the N of NH3 generated in the experiment originates from N2 passed during the experiment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    传统的氧化物电催化材料遇到了与缓慢的反应动力学和在电催化固氮中形成NH中间体的强大能障相关的重大挑战。实施阶段控制是应对这些挑战的有效策略。在这里,利用激光的能量定位,这项工作实现了TiO2的精确相位控制。在优化的材料系统中,金红石相TiO2促进氮吸附,而锐钛矿相TiO2提供质子源和活性氧。两相的协同作用有效地增强了氮还原和氧化的电催化活性,氨产量达到~22.3μgh-1cm-2,硝酸盐产量达到60.9μgh-1cm-2。此外,以混合相二氧化钛为阳极和阴极的耦合双电极系统成功地实现了电化学整体固氮的突破。这种用于操纵相位的激光精确控制策略为设计用于能量转换甚至能量存储纳米材料的高效催化剂奠定了基础。
    Traditional oxide electrocatalytic materials encounter significant challenges associated with sluggish reaction kinetics and formidable energy barriers for NH intermediates formation in electrocatalytic nitrogen fixation. The implementation of phase control emerges as an effective strategy to address these challenges. Herein, leveraging the energy localization of laser, this work achieved precise phase control of TiO2. In the optimized material system, the rutile phase TiO2 facilitates nitrogen adsorption, while the anatase phase TiO2 provides proton sources and active oxygen species. The synergistic effect of the two phases effectively enhances the electrocatalytic activity for nitrogen reduction and oxidation, with an ammonia yield reaching ∼22.3 μg h-1 cm-2 and a nitrate yield reaching ∼60.9 μg h-1 cm-2. Furthermore, a coupled dual-electrode system with mixed-phase titanium dioxide as both the anode and cathode successfully achieved a breakthrough in electrochemical overall nitrogen fixation. This laser precision control strategy for manipulating phase sites lays the groundwork for designing efficient catalysts for energy conversion and even energy storage nanomaterials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电催化氮还原反应(NRR)是实现绿色高效NH3生产的最有前途的方法之一。然而,具有高活性和选择性的高效NRR催化剂的设计仍然受到NRR中间体吸附能之间固有的线性缩放关系的严重阻碍。在这里,已初步研究了十种M3B4型MBenes的特性,以通过第一性原理计算将N2有效活化并还原为NH3。我们强调Cr3B4MBene具有显着的NRR活性,具有创纪录的低极限电位(-0.13V)。然后,这项工作提出了基于描述符的设计原则,可以有效地评估MBenes的催化活性,已进一步用于设计双金属M2M\'B4MBenes。因此,从20个双金属MBenes中提取了5个有希望的候选物,包括Ti2YB4,V2YB4,V2MoB4,Nb2YB4和Nb2CrB4,具有优异的NRR性能。进一步的分析说明,构建双金属MBenes可以选择性地调节NHNH2**和NH2NH2**的吸附强度,并打破它们的吸附能之间的线性比例关系,使它们成为NRR的理想选择。这项工作不仅开创了MBenes作为高效NRR催化剂的应用,而且还提出了提高其催化性能的合理设计原则。
    Electrocatalytic nitrogen reduction reaction (NRR) is one of the most promising approaches to achieving green and efficient NH3 production. However, the designs of efficient NRR catalysts with high activity and selectivity still are severely hampered by inherent linear scaling relations among the adsorption energies of NRR intermediates. Herein, the properties of ten M3B4 type MBenes have been initially investigated for efficient N2 activation and reduction to NH3via first-principles calculations. We highlight that Cr3B4 MBene possesses remarkable NRR activity with a record-low limiting potential (-0.13 V). Then, this work proposes descriptor-based design principles that can effectively evaluate the catalytic activity of MBenes, which have been further employed to design bimetallic M2M\'B4 MBenes. As a result, 5 promising candidates including Ti2YB4, V2YB4, V2MoB4, Nb2YB4, and Nb2CrB4 with excellent NRR performance have been extracted from 20 bimetallic MBenes. Further analysis illuminates that constructing bimetallic MBenes can selectively tune the adsorption strength of NHNH2** and NH2NH2**, and break the linear scaling relations between their adsorption energies, rendering them ideal for NRR. This work not only pioneers the application of MBenes as efficient NRR catalysts but also proposes rational design principles for boosting their catalytic performance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电催化氮还原反应(NRR)为Haber-Bosch工艺提供了一种替代方法,在过去的几十年中,实现高效NRR的单原子催化剂(SAC)引起了相当大的关注。然而,与原子簇催化剂(ACC)相比,SAC是否更适合NRR仍有待研究。在这里,在氮掺杂的碳催化剂上,我们成功地合成了Fe单体(Fe1)和三聚体(Fe3)。实验和DFT计算都表明,与N2在Fe1催化剂上的末端吸附相比,通过在Fe3催化剂上的侧向吸附增强N2活化,并且反应遵循酶促途径,降低了NRR的自由能障碍。因此,Fe3催化剂获得了更好的NRR性能(NH3产率为27.89μgh-1mg-1cat。并且法拉第效率为45.13%)比Fe1催化剂(10.98μgh-1mg-1cat。和20.98%)。因此,我们的研究为制备更有效的NRR催化剂提供了指导。
    The electrocatalytic nitrogen reduction reaction (NRR) presents an alternative method for the Haber-Bosch process, and single-atom catalysts (SACs) to achieve efficient NRR have attracted considerable attention in the past decades. However, whether SACs are more suitable for NRR compared to atomic-cluster catalysts (ACCs) remains to be studied. Herein, we have successfully synthesized both the Fe monomers (Fe1) and trimers (Fe3) on nitrogen-doped carbon catalysts. Both the experiments and DFT calculations indicate that compared to the end-on adsorption of N2 on Fe1 catalysts, N2 activation is enhanced via the side-on adsorption on Fe3 catalysts, and the reaction follows the enzymatic pathway with a reduced free energy barrier for NRR. As a result, the Fe3 catalysts achieved better NRR performance (NH3 yield rate of 27.89 μg h-1 mg-1cat. and Faradaic efficiency of 45.13%) than Fe1 catalysts (10.98 μg h-1 mg-1cat. and 20.98%). Therefore, our research presents guidance to prepare more efficient NRR catalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电化学氮还原反应(eNRR)是Haber-Bosch(H-B)工艺的极有希望的替代方法,但其商业发展受到N2分子的高键能和竞争性析氢反应(HER)的存在的限制。这里,通过h-BNN和CNT的界面杂化,探索了氮化硼(h-BNN)和碳纳米管(CNT)的无金属复合电催化剂,显示出大大提高的eNRR法拉第效率(FE)为63.9%,NH3产率为36.5μgh-1mgcat。-0.691V时为-1(与RHE相比)。观察到新的C-B和C-N化学键,表明碳纳米管和h-BNN之间存在强烈的相互作用。根据拉曼光谱和优化的h-BNN/CNT模型,h-BNN和CNT之间明显的应变效应被认为在高度改进的FE中起着重要作用,与单独的h-BNN的FE(4.7%)相比。密度泛函理论(DFT)计算进一步表明,h-BNN/CNT在eNRR中具有较低的能量势垒,给他们更高的N2对NH3的选择性,而h-BNN在她体内具有较低的能量壁垒。这项工作显示了菌株效应在增强eNRR过程中的选择性方面的重要作用。
    The electrochemical nitrogen reduction reaction (eNRR) is a highly promising alternative to the Haber-Bosch (H-B) process, but its commercial development is limited by the high bond energy of N2 molecules and the presence of the competitive hydrogen evolution reaction (HER). Here, a metal-free composite electrocatalyst of boron nitride (h-BNNs) and carbon nanotubes (CNTs) was explored through the interfacial hybridization of h-BNNs and CNTs, which showed a highly improved eNRR Faraday efficiency (FE) of 63.9% and an NH3 yield rate of 36.5 μg h-1 mgcat.-1 at -0.691 V (vs RHE). New chemical bonds of C-B and C-N were observed, indicating a strong interaction between CNTs and h-BNNs. According to the Raman spectra and the optimized model of h-BNNs/CNTs, an obvious strain effect between h-BNNs and CNTs was supposed to play a significant role in the highly improved FE, compared with the FE of h-BNNs alone (4.7%). Density functional theory (DFT) calculations further showed that h-BNNs/CNTs had lower energy barriers in eNRR, giving them higher N2 to NH3 selectivity, while h-BNNs have lower energy barriers in the HER. This work shows the important role of the strain effect in boosting the selectivity in the eNRR process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    锂介导的电化学氮还原反应(Li-NRR)完全避开了水系统中发生的竞争性析氢反应(HER),而锂的连续沉积容易阻断活性位点并进一步降低反应动力学。在这里,我们提出了一种创新的原位Li迁移策略,以实现Li取代λ-MnO2中的Mn位点,而不是演变成死Li。综合表征证实,高电压下Li的嵌入破坏了MnO6八面体的结构完整性,并进一步引发了独特的Jahn-Teller畸变,通过eg-σ和eg-π*相互作用促进Mn位点的自旋态调节以产生改善的eg轨道构型,并加速N=N键的裂解。为此,所得的阳离子无序LiMnO4提供了记录的最高NH3产率,为220μgh-1cm-2,在有机电解质中的法拉第效率(FE)为83.80%。
    Lithium-mediated electrochemical nitrogen reduction reaction (Li-NRR) completely eschews the competitive hydrogen evolution reaction (HER) occurred in aqueous system, whereas the continuous deposition of lithium readily blocks the active sites and further reduces the reaction kinetics. Herein, we propose an innovative in situ Li migration strategy to realize that Li substitutes Mn sites in λ-MnO2 instead of evolving into the dead Li. Comprehensive characterizations corroborate that the intercalation of Li+ at high voltage breaks the structural integrity of MnO6 octahedron and further triggers unique Jahn-Teller distortions, which promotes the spin state regulation of Mn sites to generate the ameliorative eg orbital configuration and accelerates N≡N bond cleavage via eg -σ and eg -π* interaction. To this end, the resulted cationic disordered LiMnO4 delivers the recorded highest NH3 yield rate of 220 μg h-1  cm-2 and a Faradaic efficiency (FE) 83.80 % in organic electrolyte.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电催化氮还原反应(eNRR)是可持续生产氨的一种有前途的方法。尽管大多数关于eNRR的研究都致力于开发高效的电催化剂,由于N2传输效率差,研究传质的影响至关重要。在这里,提出了一种新型的基于气泡的微反应器(BBMR),该反应器使用微流体策略有效地促进eNRR过程中的传质行为。BBMR拥有丰富的三相界面,并提供空间限制和精确的电位控制,确保快速的传质动力学和改进的eNRR性能,实验和模拟研究证实了这一点。在Ag纳米颗粒上反应的氨收率可以提高到31.35µgh-1mgcat。-1,是H细胞的两倍。使用Ru/C和Fe/g-CN催化剂也实现了出色的改进,氨产量增加5.0倍和8.5倍,分别。这项工作进一步证明了传质对eNRR性能的显着影响,并通过电极设计提供了一种有效的工艺增强策略。
    Electrocatalytic nitrogen reduction reaction (eNRR) is a promising method for sustainable ammonia production. Although the majority of studies on the eNRR are devoted to developing efficient electrocatalysts, it is critical to study the influence of mass transfer because of the poor N2 transfer efficiency. Herein, a novel bubble-based microreactor (BBMR) is proposed that efficiently promotes the mass transfer behavior during the eNRR using microfluidic strategies. The BBMR possesses abundant triphasic interfaces and provides spatial confinement and accurate potential control, ensuring rapid mass transfer dynamics and improved eNRR performance, as confirmed by experimental and simulation studies. The ammonia yield of the reaction over Ag nanoparticles can be enhanced to 31.35 µg h-1 mgcat. -1, which is twice that of the H-cell. Excellent improvements are also achieved using Ru/C and Fe/g-CN catalysts, with 5.0 and 8.5 times increase in ammonia yield, respectively. This work further demonstrates the significant effect of mass transfer on the eNRR performance and provides an effective strategy for process enhancement through electrode design.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    全球90%以上的NH3合成以Haber-Bosch工艺为主,消耗了全球2%的能源,产生了全球1.44%的碳排放。电化学N2还原反应(NRR)被认为是在温和的反应条件下产生NH3的有吸引力的替代途径。但是电催化剂遭受N=N裂解的困难。在这项工作中,我们报告了一种叶状MOF衍生的Ni/Zn双金属共掺杂的氮配位多孔碳(Ni/Zn-NPC)作为具有成本效益的NH3合成电催化剂。在0.1MNa2SO4电解质中,与可逆氢电极(RHE)相比,所得电催化剂在-1.0V下实现了22.68μgh-1mgcat-1的高NH3生产率。Ni/Zn-NPC材料可以称为微波可再生催化剂,因为微波处理已被证明是多场耦合的关键部分,以解毒并使催化剂具有反应性,进一步提高其稳定性。选择密度泛函理论(DFT)来探索Ni/Zn-NPC对NRR的作用机理,提供了对活性位点结构和相关反应途径的深刻预测,并揭示了痕量Ni掺杂优化了Zn原子的局部配位环境和N2吸附。
    More than 90% of the global NH3 synthesis is dominated by the Haber-Bosch process, which consumes 2% of the worldwide energy and generates 1.44% of the global carbon emission. The electrochemical N2 reduction reaction (NRR) is regarded as an attractive alternative route to produce NH3 under mild reaction conditions, but the electrocatalysts suffer from the difficulty of N≡N cleavage. In this work, we report a leaf-like MOF-derived Ni/Zn bimetallic co-doped nitrogen-coordinated porous carbon (Ni/Zn-NPC) as a cost-effective NH3 synthesis electrocatalyst. The resultant electrocatalyst achieved a high NH3 production rate of 22.68 μg h-1 mgcat-1 at -1.0 V vs a reversible hydrogen electrode (RHE) in a 0.1 M Na2SO4 electrolyte. The Ni/Zn-NPC material can be called a microwave regenerable catalyst because microwave treatment has proven to be a crucial part of the multi-field coupling to detoxify and make the catalyst reactive, further improving its stability. Density functional theory (DFT) was chosen to explore the mechanism of Ni/Zn-NPC for NRR, providing a profound prediction of the structure of the active site and related reaction pathways and revealing that trace Ni doping optimizes the local coordination environment and N2 adsorption of Zn atoms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在碳纳米纤维(Fe@CNF)上实现了界面工程的Fe3O4纳米晶粒的氧空位调制,以通过简单的静电纺丝和调节热过程来提高电催化氮还原反应(NRR)的活性和稳定性。在800℃煅烧的最佳催化剂(Fe@CNF-800)具有丰富的纳米颗粒边界和优化的铁氧化物氧空位(Vo)浓度,从而提供37.1μgh-1mgcat。-1(-0.2Vvs.可逆氢电极(RHE))NH3产率和合理的法拉第效率(10.2%),与商业Fe3O4相比,原子活性增强了13.6倍。颗粒中组装的纳米颗粒的界面效应与Vo和更多内在活性位点的形成相关,有利于氮气(N2)的捕集和活化。原位X射线光电子能谱(XPS)测量揭示了通过Vo的捕获效应引入N2时吸附氧的实际消耗。密度泛函理论(DFT)计算验证了促进氢化作用和消除与N2相互作用的氢中间体(H*)向载体的氧气转移。最佳催化剂显示至少90h的持续NRR活性,表现优于大多数报道的铁基NRR催化剂。
    The oxygen vacancy modulation of interface-engineered Fe3O4 nanograins over carbon nanofiber (Fe@CNF) was achieved to improve electrocatalytic nitrogen reduction reaction (NRR) activity and stability via facile electrospinning and tuning thermal procedure. The optimal catalyst calcined at 800 ℃ (Fe@CNF-800) was endowed with abundant nanograin boundaries and optimized oxygen vacancy (Vo) concentration of iron oxides, thereby affording 37.1 μg h-1 mgcat.-1 (-0.2 V vs. reversible hydrogen electrode (RHE)) NH3 yield and rational Faraday efficiency (10.2%), with 13.6 times atomic activity enhancement compared to of that commercial Fe3O4. The interfacial effect of assembled nanograins in particles correlated with the formation of Vo and more intrinsic active sites, which is conducive to the trapping and activation of nitrogen (N2). The in-situ X-ray photoelectron spectroscopy (XPS) measurement revealed the real consumption of adsorbed oxygen when introducing N2 by the trapping effect of Vo. Density-Functional-Theory (DFT) calculation validates the promotive hydrogenation effect and elimination of hydrogen intermediate (H*) interacted with N2 transferring toward oxygen of the support. The optimal catalyst shows a lasting NRR activity at least 90 h, outperforming most reported Fe-based NRR catalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这项工作中,我们使用密度泛函理论(DFT)计算研究了外围B掺杂对N掺杂石墨烯负载的单金属原子的电催化氮还原反应(NRR)性能的影响。我们的结果表明,B原子的外围配位可以提高单原子催化剂(SACs)的稳定性,并削弱氮与中心原子的结合。有趣的是,发现单金属原子磁矩(μ)的变化与B掺杂前后最佳NRR路径的极限电势(UL)的变化之间存在线性关系。还发现B原子的引入抑制了析氢反应,从而增强SAC的NRR选择性。这项工作为电催化NRR的有效SAC设计提供了有用的见解。
    In this work, we investigate the effect of peripheral B doping on the electrocatalytic nitrogen reduction reaction (NRR) performance of N-doped graphene-supported single-metal atoms using density functional theory (DFT) calculations. Our results showed that the peripheral coordination of B atoms could improve the stability of the single-atom catalysts (SACs) and weaken the binding of nitrogen to the central atom. Interestingly, it was found that there was a linear correlation between the change in the magnetic moment (μ) of single-metal atoms and the change in the limiting potential (UL) of the optimum NRR pathway before and after B doping. It was also found that the introduction of the B atom suppressed the hydrogen evolution reaction, thereby enhancing the NRR selectivity of the SACs. This work provides useful insights into the design of efficient SACs for electrocatalytic NRR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号