electrical properties

电气性能
  • 文章类型: Journal Article
    具有宽带隙(3.6eV)的n型半导体SnO2大量用于气敏材料中,但是纯SnO2的工作温度仍然很高,低响应,迟钝的反应速度。为了解决这些问题,我们使用水热和冷冻干燥方法(SnO2-FD)制备了小型纯SnO2,并将其与使用常规干燥方法(SnO2-AD)制备的SnO2进行了比较。SnO2-FD传感器在100°C下对NO2具有超高的灵敏度,具有出色的选择性和湿度稳定性。出色的气体传感特性归因于能带结构的调制和增加的载流子浓度,使其更容易与NO2进行电子交换。SnO2-FD的优异气敏特性表明其作为NO2传感器的巨大潜力。
    The n-type semiconductor SnO2 with a wide band gap (3.6 eV) is massively used in gas-sensitive materials, but pure SnO2 still suffers from a high operating temperature, low response, and tardy responding speed. To solve these problems, we prepared small-sized pure SnO2 using hydrothermal and freeze-drying methods (SnO2-FD) and compared it with SnO2 prepared using a normal drying method (SnO2-AD). The sensor of SnO2-FD had an ultra-high sensitivity to NO2 at 100 °C with excellent selectivity and humidity stability. The outstanding gas sensing properties are attributed to the modulation of energy band structure and the increased carrier concentration, making it more accessible for electron exchange with NO2. The excellent gas sensing properties of SnO2-FD indicate its tremendous potential as a NO2 sensor.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    可以将热能转化为电能的热电材料是稳定且持久的,并且不排放温室气体;这些性质使得它们可用于可以保存和利用损失的热量的新型发电装置。SiC表现出良好的机械性能,优异的耐腐蚀性,高温稳定性,无毒性,和环境友好。它可以承受高温和热冲击,非常适合高温和恶劣环境中的热电转换,比如超音速飞行器和火箭。本文综述了SiC作为高温热电和第三代宽带隙半导体材料的潜力。综述了近年来SiC热电材料的研究进展,讨论了优化SiC热电性能的原理和方法。因此,本文可能有助于提高SiC在高温热电能转换中的应用潜力。
    Thermoelectric materials that can convert thermal energy to electrical energy are stable and long-lasting and do not emit greenhouse gases; these properties render them useful in novel power generation devices that can conserve and utilize lost heat. SiC exhibits good mechanical properties, excellent corrosion resistance, high-temperature stability, non-toxicity, and environmental friendliness. It can withstand elevated temperatures and thermal shock and is well suited for thermoelectric conversions in high-temperature and harsh environments, such as supersonic vehicles and rockets. This paper reviews the potential of SiC as a high-temperature thermoelectric and third-generation wide-bandgap semiconductor material. Recent research on SiC thermoelectric materials is reviewed, and the principles and methods for optimizing the thermoelectric properties of SiC are discussed. Thus, this paper may contribute to increasing the application potential of SiC for thermoelectric energy conversion at high temperatures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于电特性的磁共振成像断层摄影(MR-EPT)是测量生物组织的电特性(EP)的非侵入性技术。在这项工作中,我们呈现并数值研究展开的性能,二维MR-EPT重建的物理辅助方法,其中卷积神经网络的级联用于计算对比度更新。每个网络接受输入EP和梯度下降方向(编码所采用的散射模型的基础物理),并返回更新的对比度函数作为输出。该网络使用128MHz的现实大脑模型的2D切片进行计算机模拟和测试。结果表明,所提出的程序能够重建与流行的对比源反演EPT质量相当的EP图,同时大大减少了计算时间。
    Magnetic Resonance imaging based Electrical Properties Tomography (MR-EPT) is a non-invasive technique that measures the electrical properties (EPs) of biological tissues. In this work, we present and numerically investigate the performance of an unrolled, physics-assisted method for 2D MR-EPT reconstructions, where a cascade of Convolutional Neural Networks is used to compute the contrast update. Each network takes in input the EPs and the gradient descent direction (encoding the physics underlying the adopted scattering model) and returns as output the updated contrast function. The network is trained and tested in silico using 2D slices of realistic brain models at 128 MHz. Results show the capability of the proposed procedure to reconstruct EPs maps with quality comparable to that of the popular Contrast Source Inversion-EPT, while significantly reducing the computational time.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    纳米铁氧体,金属氧化物,和碳基纳米材料已被频繁用于增强潜在应用的光学和磁性前景。通过水热路线合成的铜铁氧体/氧化石墨烯和氧化锌(CuFe2O4/GO/ZnO)三元纳米复合材料显示出非常好的结果,因为合成的纳米复合材料的带隙能量值接近2.4eV。此外,通过添加ZnO和GO,CuFe2O4的吸光度增加。实验数据显示,即使在添加ZnO和GO后,纯脊柱铁氧体(CuFe2O4)纳米粒子的面心立方结构(FCC)。在(220)hkl平面下在31.70°观察到的2θ峰表明在CuFe2O4/GO纳米复合材料中成功添加了ZnO纳米颗粒。XRD图,没有GO的特征峰表明CuFe2O4纳米颗粒与GO层的嵌入。在SEM图像中,由于具有高表面体积比(S/V)的纳米微晶的磁性相互作用,观察到CuFe2O4纳米颗粒之间的团聚。VSM可用于在0-0.5和±5特斯拉的中等温度下确定合成样品的磁性。在CuFe2O4/GO/ZnO三元纳米复合材料中,由于添加了ZnO纳米颗粒,饱和磁化强度值从2.071降低到1.365emu/g。随着在CuFe2O4/GO三元纳米复合材料中添加ZnO纳米颗粒,环变窄,显示矫顽场降低。此外,纯CuFe2O4和CuFe2O4/GO/ZnO三元纳米复合材料的电性能研究表明,由于表面电荷极化和固有偶极相互作用,介电常数和正切损耗值在高频下降低。纯CuFe2O4和CuFe2O4/GO/ZnO三元纳米复合材料的电性能研究表明,介电常数(ε')和正切损耗(tanδ)随着频率的增加而呈下降趋势。这种行为归因于表面电荷极化和固有偶极相互作用。在较低的频率,这两个样本都显示这些属性的升高值,其随着频率增加超过2MHz而稳定。值得注意的是,在两个样品中都观察到高交流电导率,归因于增加的电容和电阻。
    Nano-ferrites, metal oxides, and carbon-based nanomaterials have been used frequently to enhance optical and magnetic prospects for latent applications. Copper ferrite/Graphene Oxide and Zinc Oxide (CuFe2O4/GO/ZnO) ternary nanocomposite synthesized by hydrothermal route showed dramatically good outcomes as the band gap energy value of synthesized nanocomposite approaches to 2.4 eV. Furthermore, the light absorbance of CuFe2O4 increases by adding ZnO and GO. The experimental data revealed the face-centered cubic structure (FCC) of pure spinal ferrite (CuFe2O4) nanoparticles even after adding ZnO and GO. The 2θ peak observed at 31.70° with (220) hkl planes indicates the successful addition of ZnO nanoparticles in CuFe2O4/GO nanocomposite. XRD graph, the absence of characteristic peaks of GO revealed the intercalation of CuFe2O4 nanoparticles with GO layers. In SEM images, agglomeration among CuFe2O4 nanoparticles is observed due to the magnetic interaction of nano-crystallite with a high surface-to-volume (S/V) ratio. VSM can be used to determine the magnetic properties of as-synthesized samples at moderate temperatures under 0-0.5 and ± 5 tesla. In CuFe2O4/GO/ZnO ternary nanocomposite, the saturation magnetization value reduces from 2.071 to 1.365 emu/g due to the addition of ZnO nanoparticles. The loops were narrowed showing a decrease in the coercive field with the addition of ZnO nanoparticles in CuFe2O4/GO ternary nanocomposite material. Moreover, the study of electrical properties of pure CuFe2O4 and CuFe2O4/GO/ZnO ternary nanocomposite revealed that the values of dielectric constant and tangent loss decrease at high frequencies owing to surface charge polarization and intrinsic dipole interactions. The study of the electrical properties of both pure CuFe2O4 and the CuFe2O4/GO/ZnO ternary nanocomposite reveals that the dielectric constant (ε\') and tangent loss (tanδ) exhibit a decreasing trend as the frequency increases. This behavior is attributed to surface charge polarization and intrinsic dipole interactions. At lower frequencies, both samples display elevated values for these properties, which stabilize as the frequency increases beyond 2 MHz. Notably, high AC conductivity is observed in both samples, attributed to increased capacitance and resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    壳聚糖是一种具有独特性质的生物聚合物,近几十年来在各个科学领域引起了广泛关注。尽管壳聚糖以其较差的电气和机械性能而闻名,人们对生产用碳基材料增强的壳聚糖基材料感兴趣,以赋予特殊的性能,如高导电性和高杨氏模量。这项研究描述了碳基材料的协同效应,如还原的氧化石墨烯和碳纳米管,在改善电气方面,光学,壳聚糖基薄膜的力学性能。我们的发现表明,还原氧化石墨烯的掺入会影响壳聚糖的结晶度,这极大地影响了薄膜的机械性能。然而,加入还原的氧化石墨烯-碳纳米管复合物不仅显著改善了机械性能,而且显著改善了光学和电学性能,如光致发光研究和采用四探针技术的电阻率测量所证明的。这是一个很有前景的新材料的合成,如生物聚合物薄膜,在光学领域的潜在应用,电气,和生物医学生物工程应用。
    Chitosan is a biopolymer with unique properties that have attracted considerable attention in various scientific fields in recent decades. Although chitosan is known for its poor electrical and mechanical properties, there is interest in producing chitosan-based materials reinforced with carbon-based materials to impart exceptional properties such as high electrical conductivity and high Young\'s modulus. This study describes the synergistic effect of carbon-based materials, such as reduced graphene oxide and carbon nanotubes, in improving the electrical, optical, and mechanical properties of chitosan-based films. Our findings demonstrate that the incorporation of reduced graphene oxide influences the crystallinity of chitosan, which considerably impacts the mechanical properties of the films. However, the incorporation of a reduced graphene oxide-carbon nanotube complex not only significantly improves the mechanical properties but also significantly improves the optical and electrical properties, as was demonstrated from the photoluminescence studies and resistivity measurements employing the four-probe technique. This is a promising prospect for the synthesis of new materials, such as biopolymer films, with potential applications in optical, electrical, and biomedical bioengineering applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    MoS2和金属电极之间形成的接触电阻在基于MoS2的电子器件中起着关键作用。肖特基势垒高度(SBH)是确定接触电阻的关键参数。然而,由于MoS2-金属界面处的强费米能级钉扎(FLP),因此难以调节SBH。这里,我们使用基于Perdew-Burke-Ernzerhof(PBE)水平的密度泛函理论(DFT)计算研究了单层和多层MoS2-金属范德华(vdW)界面的FLP效应和接触类型。已经证明,与单层MoS2-金属紧密界面相比,在单层MoS2-金属vdW界面中,FLP效应可以显着降低。此外,随着MoS2的层数从1L增加到4L,FLP效应先减弱后增强,这可以归因于MoS2-金属和MoS2-MoS2界面处的电荷重新分布。此外,p型肖特基接触可以在1L-4LMoS2-Pt中实现,3LMoS2-Au,和2L-3LMoS2-PdvdW接口,这对于实现互补金属氧化物半导体(CMOS)逻辑电路是有用的。这些发现表明,通过选择MoS2的层数,可以在MoS2-金属vdW界面处有效地调制FLP和接触类型。
    The contact resistance formed between MoS2 and metal electrodes plays a key role in MoS2-based electronic devices. The Schottky barrier height (SBH) is a crucial parameter for determining the contact resistance. However, the SBH is difficult to modulate because of the strong Fermi-level pinning (FLP) at MoS2-metal interfaces. Here, we investigate the FLP effect and the contact types of monolayer and multilayer MoS2-metal van der Waals (vdW) interfaces using density functional theory (DFT) calculations based on Perdew-Burke-Ernzerhof (PBE) level. It has been demonstrated that, compared with monolayer MoS2-metal close interfaces, the FLP effect can be significantly reduced in monolayer MoS2-metal vdW interfaces. Furthermore, as the layer number of MoS2 increases from 1L to 4L, the FLP effect is first weakened and then increased, which can be attributed to the charge redistribution at the MoS2-metal and MoS2-MoS2 interfaces. In addition, the p-type Schottky contact can be achieved in 1L-4L MoS2-Pt, 3L MoS2-Au, and 2L-3L MoS2-Pd vdW interfaces, which is useful for realizing complementary metal oxide semiconductor (CMOS) logic circuits. These findings indicated that the FLP and contact types can be effectively modulated at MoS2-metal vdW interfaces by selecting the layer number of MoS2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    III族氮化物已经改变了固态照明,并在战略上定位为彻底改变高功率和高频电子设备。为了推动这一发展,对基本材料特性的深刻理解,如电荷载流子行为,是必不可少的,也可以揭示新的和不可预见的应用程序。这强调了新型表征工具研究III族氮化物材料和器件的必要性。光学霍尔效应(OHE)作为一种非接触式方法出现,用于探索半导体材料的传输和电子特性,同时提供对它们介电功能的见解。这种无损技术在存在磁场的情况下采用长波长的椭圆偏振光谱,并提供有关电荷载流子密度的定量信息,sign,移动性,以及多层结构和散装材料中各个层的有效质量。在本文中,我们探索使用太赫兹(THz)OHE来研究III族氮化物异质结构和块状材料中的载流子特性。示例包括用于高线性器件的渐变AlGaN沟道高电子迁移率晶体管(HEMT)结构,突出了不同的分级曲线及其对二维电子气(2DEG)性质的影响。接下来,我们证明了THzOHE区分N极性GaN/AlGaNHEMT中2DEG各向异性迁移率参数的敏感性,并表明这种各向异性是由阶梯状表面形貌引起的。最后,我们介绍了GaN中2DEG和体电子的电荷载流子特性的温度依赖性结果,重点是有效质量参数,并回顾了文献中报道的有效质量参数。这些研究展示了THzOHE促进对III组材料和设备的理解和开发的能力。
    Group-III nitrides have transformed solid-state lighting and are strategically positioned to revolutionize high-power and high-frequency electronics. To drive this development forward, a deep understanding of fundamental material properties, such as charge carrier behavior, is essential and can also unveil new and unforeseen applications. This underscores the necessity for novel characterization tools to study group-III nitride materials and devices. The optical Hall effect (OHE) emerges as a contactless method for exploring the transport and electronic properties of semiconductor materials, simultaneously offering insights into their dielectric function. This non-destructive technique employs spectroscopic ellipsometry at long wavelengths in the presence of a magnetic field and provides quantitative information on the charge carrier density, sign, mobility, and effective mass of individual layers in multilayer structures and bulk materials. In this paper, we explore the use of terahertz (THz) OHE to study the charge carrier properties in group-III nitride heterostructures and bulk material. Examples include graded AlGaN channel high-electron-mobility transistor (HEMT) structures for high-linearity devices, highlighting the different grading profiles and their impact on the two-dimensional electron gas (2DEG) properties. Next, we demonstrate the sensitivity of the THz OHE to distinguish the 2DEG anisotropic mobility parameters in N-polar GaN/AlGaN HEMTs and show that this anisotropy is induced by the step-like surface morphology. Finally, we present the temperature-dependent results on the charge carrier properties of 2DEG and bulk electrons in GaN with a focus on the effective mass parameter and review the effective mass parameters reported in the literature. These studies showcase the capabilities of the THz OHE for advancing the understanding and development of group-III materials and devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    研究了以1、3、5和7wt%掺杂多壁碳纳米管(MWCNT)的热塑性聚氨酯(TPU)。MWCNTs对热的影响,粘弹性,用差示扫描量热法(DSC)表征TPU基体的电性能,动态力学分析(DMA),和阻抗谱。结果表明,电气,和粘弹性,如玻璃化转变温度,转向高温。熔化温度下降,电导率和储能模量分别提高了61.5%和58.3%。先前在膜上观察到的行为是由于TPU基质中碳纳米管(CNT)的质量百分比增加。此外,可以说碳纳米管均匀地分散在TPU基体中,防止聚合物链的运动,并产生通道或连接,以增加电导率并改善材料的热性能。
    Thermoplastic polyurethane (TPU) doped with multi-walled carbon nanotubes (MWCNTs) at 1, 3, 5, and 7 wt% has been studied. The effect of MWCNTs on thermal, viscoelastic, and electric properties in the TPU matrix was characterized by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and by impedance spectroscopy. The results show that the thermal, electrical, and viscoelastic properties, such as the glass transition temperature, shifted towards high temperatures. The melting temperature decreased, and the conductivity and the storage modulus increased by 61.5 % and 58.3 %. The previously observed behavior on the films is due to the increase in the mass percentage of carbon nanotubes (CNTs) in the TPU matrix. Also, it can be said that the CNTs were homogeneously dispersed in the TPU matrix, preventing the movement of the polymer chains, and generating channels or connections that increase the conductivity and improve the thermal properties of the material.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    使用有毒还原剂的还原氧化石墨烯(rGO)的常见合成方法对环境污染构成威胁。本研究以香蕉皮提取物为绿色还原剂合成rGO。超声处理被同化以加快合成过程。为了比较,还通过在常规搅拌下用肼处理还原GO来生产rGO。形态学(SEM)和物理化学(FTIR和XRD)研究都表明,香蕉皮提取物可以将GO还原为rGO,虽然它的还原效果比肼弱得多。尽管如此,与传统的搅拌法相比,使用香蕉皮提取物通过超声技术同化生产的rGO具有更大的层间间距。在电气性能方面,肼产生的rGO的电导率(5.69×10-6S)高于香蕉皮提取物产生的rGO(3.55×10-6S-4.56×10-6S)。有趣的是,发现在超声波辅助下由香蕉皮提取物产生的大多数rGO与在搅拌方法下由香蕉皮提取物产生的rGO相比具有更高或相当的电导率。这意味着在rGO合成中使用短周期超声代替常规搅拌的可行性。
    The common synthesis approach of reduced graphene oxide (rGO) using toxic reducing agents poses a threat to environmental pollution. This study used banana peel extract as a green reducing agent for the synthesis of rGO. Ultrasonication was assimilated to expedite the synthesis process. For comparison, rGO was also produced by reducing GO with hydrazine treatment under conventional stirring. Both morphological (SEM) and physicochemical (FTIR and XRD) studies have revealed that banana peel extract can reduce GO to rGO, although its reducing effect is much weaker compared to hydrazine. Despite this, the rGO produced using banana peel extract with the assimilation of ultrasonication technique has a greater interlayer spacing than that formed under the conventional stirring method. In terms of electrical properties, the electrical conductance of hydrazine-produced rGO (5.69 × 10-6 S) is higher than the banana peel extract-produced rGO (3.55 × 10-6 S - 4.56 × 10-6 S). Interestingly, it was found that most of the rGO produced by banana peel extract under ultrasound assistance has higher or comparable electrical conductance compared to the rGO produced by banana peel extract under stirring method. This implies the feasibility of using short-period ultrasound to replace conventional stirring in rGO synthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    铜颗粒的物理性能以及热和电稳定性可以通过表面保护来改善。这主要取决于涂层材料。我们的研究是,因此,专注于流变学,热,通过比较未涂覆(Cu),聚合物复合材料的机械和电学表征各种体积浓度(高达40%)的低密度聚乙烯中的银涂层(Cu@Ag)和二氧化硅涂层(Cu@Si)铜片。通过流变特性研究了颗粒之间的相互作用,因为这些表明网络形成(几何纠缠),这对于机械加固以及建立电通路(电渗透)是重要的。结果表明,Cu和Cu@Si的几何和电渗流相同,~15%,while,令人惊讶的是,Cu@Ag表现出低得多的渗滤,~7.5%,表明Ag涂层材料的熔化,这也降低了晶体生长(结晶度)。此外,对于所有研究的材料,流变和机械响应的大小保持相同,表明涂层材料不提供任何负载转移能力。然而,它们深刻影响电子转移,在这一点上,与Cu(1.7×10-4S/m)和Cu@Si(1.5×10-10S/m)相比,Cu@Ag表现出优异的电导率(74.4S/m)。获得的结果对于设计各种应用的先进聚合物复合材料非常重要,特别是在需要增强导电性的电子设备中。
    The physical properties as well as thermal and electrical stability of copper particles can be improved by surface protection, which mainly depends on the coating material. Our study was, therefore, focused on the rheological, thermal, mechanical and electrical characterization of polymer composites by comparing uncoated (Cu), silver-coated (Cu@Ag) and silica-coated (Cu@Si) copper flakes in low-density polyethylene at various volume concentrations (up to 40%). Interactions among particles were investigated by rheological properties, as these indicate network formation (geometrical entanglement), which is important for mechanical reinforcement as well as establishing an electric pathway (electrical percolation). The results showed that geometrical and electrical percolation were the same for Cu and Cu@Si, ~15%, while, surprisingly, Cu@Ag exhibited much lower percolation, ~7.5%, indicating the fusion of the Ag coating material, which also decreased crystal growth (degree of crystallinity). Furthermore, the magnitude of the rheological and mechanical response remained the same for all investigated materials, indicating that the coating materials do not provide any load transfer capabilities. However, they profoundly affect electron transfer, in that, Cu@Ag exhibited superior conductivity (74.4 S/m) compared to Cu (1.7 × 10-4 S/m) and Cu@Si (1.5 × 10-10 S/m). The results obtained are important for the design of advanced polymer composites for various applications, particularly in electronics where enhanced electrical conductivity is desired.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号