dystrophin-associated protein complex

  • 文章类型: Journal Article
    肌营养不良(MD)是一组遗传起源的异质性疾病,其特征是进行性骨骼肌变性和虚弱。有几种类型的MD,发病年龄不同,严重程度,和受影响肌肉的模式。然而,随着时间的推移,它们都会恶化,许多患者最终将失去行走能力。除了骨骼肌的影响,患有MD的患者可能会出现心脏和呼吸系统疾病,产生可能导致死亡的并发症。需要进行跨学科管理以改善MD患者的监测和生活质量。目前,药物治疗仅适用于Duchene肌营养不良症(DMD)-最常见的MD类型-并且主要基于使用皮质类固醇。由肌营养不良蛋白相关蛋白(DAP)改变引起的其他MD频率较低,但代表了这些疾病中的重要群体。几乎没有探索在患有MD和其他与肌营养不良蛋白相关的蛋白质的患者中具有临床潜力的药理学替代品。这篇综述侧重于已经显示出有益效果的药物和分子,主要在涉及DAP改变的实验模型中。与导致在不太常见的MD中恢复或维持肌肉力量和减少纤维化的有希望的结果相关的机制(即,关于DMD)进行了探索,以及其他有助于维持肌纤维稳态的治疗靶点,涉及不同的途径,如钙调节,肥大,和卫星细胞功能的维持,也检查了。在开发出针对MD的明确治疗之前,这里探索的一些药物可能用于经济地改善患者的肌肉功能。
    Muscular dystrophies (MDs) are a heterogeneous group of diseases of genetic origin characterized by progressive skeletal muscle degeneration and weakness. There are several types of MDs, varying in terms of age of onset, severity, and pattern of the affected muscles. However, all of them worsen over time, and many patients will eventually lose their ability to walk. In addition to skeletal muscle effects, patients with MDs may present cardiac and respiratory disorders, generating complications that could lead to death. Interdisciplinary management is required to improve the surveillance and quality of life of patients with an MD. At present, pharmacological therapy is only available for Duchene muscular dystrophy (DMD)-the most common type of MD-and is mainly based on the use of corticosteroids. Other MDs caused by alterations in dystrophin-associated proteins (DAPs) are less frequent but represent an important group within these diseases. Pharmacological alternatives with clinical potential in patients with MDs and other proteins associated with dystrophin have been scarcely explored. This review focuses on drugs and molecules that have shown beneficial effects, mainly in experimental models involving alterations in DAPs. The mechanisms associated with the effects leading to promising results regarding the recovery or maintenance of muscle strength and reduction in fibrosis in the less-common MDs (i.e., with respect to DMD) are explored, and other therapeutic targets that could contribute to maintaining the homeostasis of muscle fibers, involving different pathways, such as calcium regulation, hypertrophy, and maintenance of satellite cell function, are also examined. It is possible that some of the drugs explored here could be used to affordably improve the muscular function of patients until a definitive treatment for MDs is developed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞极性机制允许形成具有独特蛋白质组成的专门膜结构域,信号属性,和功能特征。通过分析钾通道和属于肌营养不良蛋白相关蛋白复合物的蛋白质的定位,我们揭示了在C.elegans肌肉细胞表面存在不同的平面极化膜区室。我们发现,肌肉极性是由涉及配体EGL-20/Wnt的非规范Wnt信号级联控制的,受体CAM-1/Ror,和细胞内效应物DSH-1/Dishevelled。有趣的是,此过程不需要经典的平面细胞极性蛋白。使用时间分辨的蛋白质降解,我们证明了-虽然它在胚胎发生结束时基本上已经到位-肌肉极性是一种动态状态,需要在整个胚胎后生命中持续存在DSH-1。我们的结果揭示了C.elegans肌肉膜的意外复杂性,并建立了一个可遗传处理的模型系统来研究体内细胞极性和膜区室化。
    Cell polarity mechanisms allow the formation of specialized membrane domains with unique protein compositions, signalling properties, and functional characteristics. By analyzing the localization of potassium channels and proteins belonging to the dystrophin-associated protein complex, we reveal the existence of distinct planar-polarized membrane compartments at the surface of C. elegans muscle cells. We find that muscle polarity is controlled by a non-canonical Wnt signalling cascade involving the ligand EGL-20/Wnt, the receptor CAM-1/Ror, and the intracellular effector DSH-1/Dishevelled. Interestingly, classical planar cell polarity proteins are not required for this process. Using time-resolved protein degradation, we demonstrate that -while it is essentially in place by the end of embryogenesis- muscle polarity is a dynamic state, requiring continued presence of DSH-1 throughout post-embryonic life. Our results reveal the unsuspected complexity of the C. elegans muscle membrane and establish a genetically tractable model system to study cellular polarity and membrane compartmentalization in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    杜氏肌营养不良(DMD)是一种由功能性肌营养不良蛋白缺失引起的破坏性肌肉疾病。目前正在进行的多项DMD临床试验正在测试基因疗法,这些疗法由腺相关病毒(AAV)载体组成,这些载体携带针对功能进行优化的肌营养不良蛋白的小型化版本。称为微肌营养不良蛋白(μDys)。Utrophin,肌营养不良蛋白的胎儿同源物,反复报道,作为一种代偿机制,在人类DMD肌肉中被上调,但μDys是否置换全长的乌托芬是未知的。在这项研究中,在骨骼肌中具有全长乌托素转基因过表达的肌营养不良蛋白/乌托素缺陷小鼠全身施用低剂量的AAV6-CK8e-Hinge3-µDys(μDysH3)或AAV6-CK8e-μDys5(μDys5)。我们使用免疫荧光定性评估了μDys在股四头肌中的转基因乌托素和神经元一氧化氮合酶(nNOS)的定位。由两种基因疗法产生的μDys蛋白与转基因乌托邦蛋白共定位在肌纤维膜上。我们还证实了nNOS与μDys5的肌膜共定位,但与转基因乌托邦蛋白表达或μDysH3无关。从两种疗法产生的转基因乌托邦蛋白表达和μDys蛋白稳定了肌营养不良蛋白-糖蛋白复合物,如通过β-肌营养不良聚糖的肌膜定位所观察到的。这项研究表明,μDys基因治疗可能不会抑制DMD肌肉中utrophin的任何内源性补偿。
    Duchenne muscular dystrophy (DMD) is a devastating muscle disease caused by the absence of functional dystrophin. There are multiple ongoing clinical trials for DMD that are testing gene therapy treatments consisting of adeno-associated viral (AAV) vectors carrying miniaturized versions of dystrophin optimized for function, termed micro-dystrophins (μDys). Utrophin, the fetal homolog of dystrophin, has repeatedly been reported to be upregulated in human DMD muscle as a compensatory mechanism, but whether µDys displaces full-length utrophin is unknown. In this study, dystrophin/utrophin-deficient mice with transgenic overexpression of full-length utrophin in skeletal muscles were systemically administered low doses of either AAV6-CK8e-Hinge3-µDys (μDysH3) or AAV6-CK8e-μDys5 (μDys5). We used immunofluorescence to qualitatively assess the localization of μDys with transgenic utrophin and neuronal nitric oxide synthase (nNOS) in quadriceps muscles. μDys protein resulting from both gene therapies co-localized at myofiber membranes with transgenic utrophin. We also confirmed the sarcolemmal co-localization of nNOS with μDys5, but not with transgenic utrophin expression or μDysH3. Transgenic utrophin expression and μDys proteins produced from both therapies stabilize the dystrophin-glycoprotein complex as observed by sarcolemmal localization of β-dystroglycan. This study suggests that µDys gene therapy will likely not inhibit any endogenous compensation by utrophin in DMD muscle.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    2C/R5型肢体带型肌营养不良(LGMD)是由γ-肌聚糖(SGCG)基因突变引起的,其特征是肌肉无力和进行性消瘦。肌养蛋白相关蛋白复合物中功能性γ-肌聚糖蛋白的丢失会使肌膜不稳定,最终导致肌纤维死亡.SGCG敲除小鼠(SGCG-/-)具有复制人类疾病的临床病理特征,使其成为翻译研究的理想模型。我们设计了一种自我互补的rAAVrh74载体,其中包含由肌肉特异性MHCK7启动子(SRP-9005)驱动的密码子优化的人SGCG转基因,以研究腺相关病毒(AAV)介导的SGCG基因在SGCG-/-小鼠中的转移作为LGMD2C/R5的原理证明。基因转移治疗导致广泛的转基因表达在骨骼肌和心脏,以减少的中央核和纤维化为特征的肌肉组织病理学的改善,和归一化的纤维尺寸。组织病理学改善伴随着功能改善,包括增加的步行和力量的产生以及对胫骨前肌和diaphragm肌损伤的抵抗力。这项研究证明了hSGCG转基因在SGCG-/-小鼠中的成功全身递送,具有功能性蛋白质表达,肌聚糖复合物的重建,以及相应的生理和功能改善,这将有助于为LGMD2C/R5患者建立SRP-9005基因转移治疗翻译的最小有效剂量。
    Limb-girdle muscular dystrophy (LGMD) type 2C/R5 results from mutations in the γ-sarcoglycan (SGCG) gene and is characterized by muscle weakness and progressive wasting. Loss of functional γ-sarcoglycan protein in the dystrophin-associated protein complex destabilizes the sarcolemma, leading to eventual myofiber death. The SGCG knockout mouse (SGCG -/-) has clinical-pathological features that replicate the human disease, making it an ideal model for translational studies. We designed a self-complementary rAAVrh74 vector containing a codon-optimized human SGCG transgene driven by the muscle-specific MHCK7 promoter (SRP-9005) to investigate adeno-associated virus (AAV)-mediated SGCG gene transfer in SGCG -/- mice as proof of principle for LGMD 2C/R5. Gene transfer therapy resulted in widespread transgene expression in skeletal muscle and heart, improvements in muscle histopathology characterized by decreased central nuclei and fibrosis, and normalized fiber size. Histopathologic improvements were accompanied by functional improvements, including increased ambulation and force production and resistance to injury of the tibialis anterior and diaphragm muscles. This study demonstrates successful systemic delivery of the hSGCG transgene in SGCG -/- mice, with functional protein expression, reconstitution of the sarcoglycan complex, and corresponding physiological and functional improvements, which will help establish a minimal effective dose for translation of SRP-9005 gene transfer therapy in patients with LGMD 2C/R5.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌营养不良蛋白相关蛋白复合物(DAPC)是一种高度组织化的多蛋白复合物,在肌纤维结构完整性和细胞信号传导中起着关键作用。复合体由三个不同的相互作用的子组组成,细胞内外周蛋白,跨膜糖蛋白,和细胞外糖蛋白亚复合物。肌营养不良蛋白使DAPC成核,并且对于将细胞内肌动蛋白细胞骨架丝连接到通过层粘连蛋白连接到细胞外基质的肌膜糖蛋白复合物很重要,从而在肌纤维收缩和松弛时稳定肌膜。导致任何DAPC蛋白的表达缺乏或表达改变的基因突变与不同类型的肌肉疾病相关。因此,在健康和营养不良的肌肉中对这种复合物的表征可能会使人们了解其在肌肉发病机理中的作用。这篇综述强调了质谱在表征DAPC相互作用体以及其某些成分如α-营养不良聚糖的翻译后聚糖修饰中的作用。还在健康与营养不良骨骼肌的背景下讨论了使用靶向质谱法检测和定量肌营养不良蛋白。
    The dystrophin-associated protein complex (DAPC) is a highly organized multiprotein complex that plays a pivotal role in muscle fiber structure integrity and cell signaling. The complex is composed of three distinct interacting subgroups, intracellular peripheral proteins, transmembrane glycoproteins, and extracellular glycoproteins subcomplexes. Dystrophin protein nucleates the DAPC and is important for connecting the intracellular actin cytoskeletal filaments to the sarcolemma glycoprotein complex that is connected to the extracellular matrix via laminin, thus stabilizing the sarcolemma during muscle fiber contraction and relaxation. Genetic mutations that lead to lack of expression or altered expression of any of the DAPC proteins are associated with different types of muscle diseases. Hence characterization of this complex in healthy and dystrophic muscle might bring insights into its role in muscle pathogenesis. This review highlights the role of mass spectrometry in characterizing the DAPC interactome as well as post-translational glycan modifications of some of its components such as α-dystroglycan. Detection and quantification of dystrophin using targeted mass spectrometry are also discussed in the context of healthy versus dystrophic skeletal muscle.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Duchenne肌营养不良症(DMD)心肌病患者有发展危及生命的心律失常的风险,但机制未知.我们旨在确定离子通道控制心脏兴奋性在DMD患者心律失常机制中的作用。
    为了测试肌营养不良蛋白突变是否会导致心脏NaV1.5-Kir2.1通道体缺陷和心律失常,我们从两个半合子DMD雄性中产生iPSC-CM,一个杂合的雌性,和两个无关的对照男性。我们进行了包括共聚焦显微镜在内的研究,蛋白质表达分析,贴片夹紧,非病毒piggy-bac基因表达,光学映射和收缩性测定。
    两名患者心电图异常,室性心动过速频发。来自所有DMD患者的iPSC-CM显示异常动作电位谱,减慢的传导速度,和减少的钠(INa)和向内整流钾(IK1)电流。膜NaV1.5和Kir2.1蛋白水平在半合子DMDiPSC-CM中降低,但在杂合子iPSC-CM中没有降低。仅在一名患者的半合子iPSC-CM中转染肌营养不良蛋白复合物(α1-syntrophin)的一种成分,可恢复通道体功能,INa和IK1密度,和单个细胞中的动作电位谱。此外,α1-syntrophin表达恢复了hiPSC-CM单层中的冲动传导和收缩力,并防止了折返性心律失常。
    我们提供了第一个证明,从患有心肌病的DMD患者的皮肤成纤维细胞重新编程的iPSC-CM具有NaV1.5-Kir2.1通道的功能障碍,从而降低心脏兴奋性和传导。总之,DMD心肌病患者的iPSC-CM具有NaV1.5-Kir2.1通道功能障碍,可以通过支架蛋白α1-synrophin恢复兴奋性并预防心律失常。
    由美国国立卫生研究院R01HL122352资助;“laCaixa”银行基金会(HR18-00304);LaMaratóTV3基金会:Ayudasalainvestigaciónenenfermedadesraras2020(LAMARATO-2020);CarrodCarlosIII/FEDER/FSE研究所支持的2020-I65J研究所研究和CienciaeInnovaciónMinisteriodeCienciaeInnovación(MCIN)andtheProCNICFoundation),并且是SeveroOchoa卓越中心(授予CEX2020-001041-S,由MICIN/AEI/10.13039/501100011033资助)。美国心脏协会博士后研究金19POST34380706s至JVEN。以色列OB和MA科学基金会[824/19]。Rappaport赠款[01012020RI];和Niedersachsen基金会[ZN3452]给OB;美国-以色列双边科学基金会(BSF)给OB和TH[2019039];伯纳德·卢布林博士向OB捐款;以及荷兰杜兴父母项目(DPPNL2029771)给OB。美国国立卫生研究院R01AR068428给DM和美国-以色列双边科学基金会资助[2013032]给DM和OB。
    Patients with cardiomyopathy of Duchenne Muscular Dystrophy (DMD) are at risk of developing life-threatening arrhythmias, but the mechanisms are unknown. We aimed to determine the role of ion channels controlling cardiac excitability in the mechanisms of arrhythmias in DMD patients.
    To test whether dystrophin mutations lead to defective cardiac NaV1.5-Kir2.1 channelosomes and arrhythmias, we generated iPSC-CMs from two hemizygous DMD males, a heterozygous female, and two unrelated control males. We conducted studies including confocal microscopy, protein expression analysis, patch-clamping, non-viral piggy-bac gene expression, optical mapping and contractility assays.
    Two patients had abnormal ECGs with frequent runs of ventricular tachycardia. iPSC-CMs from all DMD patients showed abnormal action potential profiles, slowed conduction velocities, and reduced sodium (INa) and inward rectifier potassium (IK1) currents. Membrane NaV1.5 and Kir2.1 protein levels were reduced in hemizygous DMD iPSC-CMs but not in heterozygous iPSC-CMs. Remarkably, transfecting just one component of the dystrophin protein complex (α1-syntrophin) in hemizygous iPSC-CMs from one patient restored channelosome function, INa and IK1 densities, and action potential profile in single cells. In addition, α1-syntrophin expression restored impulse conduction and contractility and prevented reentrant arrhythmias in hiPSC-CM monolayers.
    We provide the first demonstration that iPSC-CMs reprogrammed from skin fibroblasts of DMD patients with cardiomyopathy have a dysfunction of the NaV1.5-Kir2.1 channelosome, with consequent reduction of cardiac excitability and conduction. Altogether, iPSC-CMs from patients with DMD cardiomyopathy have a NaV1.5-Kir2.1 channelosome dysfunction, which can be rescued by the scaffolding protein α1-syntrophin to restore excitability and prevent arrhythmias.
    Supported by National Institutes of Health R01 HL122352 grant; \'la Caixa\' Banking Foundation (HR18-00304); Fundación La Marató TV3: Ayudas a la investigación en enfermedades raras 2020 (LA MARATO-2020); Instituto de Salud Carlos III/FEDER/FSE; Horizon 2020 - Research and Innovation Framework Programme GA-965286 to JJ; the CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation), and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded by MICIN/AEI/10.13039/501100011033). American Heart Association postdoctoral fellowship 19POST34380706s to JVEN. Israel Science Foundation to OB and MA [824/19]. Rappaport grant [01012020RI]; and Niedersachsen Foundation [ZN3452] to OB; US-Israel Binational Science Foundation (BSF) to OB and TH [2019039]; Dr. Bernard Lublin Donation to OB; and The Duchenne Parent Project Netherlands (DPPNL 2029771) to OB. National Institutes of Health R01 AR068428 to DM and US-Israel Binational Science Foundation Grant [2013032] to DM and OB.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    杜氏肌营养不良症(DMD)是一种由编码肌营养不良蛋白的基因突变引起的肌肉萎缩症。使用微肌营养不良蛋白(MD)转基因和重组腺相关病毒(rAAV)载体的基因治疗具有广阔的前景。为了克服rAAV载体的有限包装能力,大多数MD不包括肌营养不良蛋白羧基末端(CT)结构域。然而,已知CT域招募α1-和β1-合成蛋白和α-肌营养不良素,肌营养不良蛋白相关蛋白复合物(DAPC)的一部分,它是肌肉细胞的信号和结构介质。在这项研究中,我们探讨了包含肌养蛋白CT域对ΔR4-23/ΔCTMD(MD1)的影响,在DMDMDMDX大鼠中,可以在肌肉和心脏水平进行相关评估。我们通过LC-MS/MS表明,MD1表达足以恢复骨骼肌和心肌中大多数DAPC伴侣在生理水平上的相互作用,并且包含CT域增加了一些超生理水平的DAPC伴侣的招募。并行,我们证明,纳入CT域并不能提高MD1对DMD肌肉和心脏病变的疗效.我们的工作强调了MD1治疗潜力的新证据,并加强了该候选物与DMD基因治疗的相关性。
    Duchenne muscular dystrophy (DMD) is a muscle wasting disorder caused by mutations in the gene encoding dystrophin. Gene therapy using micro-dystrophin (MD) transgenes and recombinant adeno-associated virus (rAAV) vectors hold great promise. To overcome the limited packaging capacity of rAAV vectors, most MD do not include dystrophin carboxy-terminal (CT) domain. Yet, the CT domain is known to recruit α1- and β1-syntrophins and α-dystrobrevin, a part of the dystrophin-associated protein complex (DAPC), which is a signaling and structural mediator of muscle cells. In this study, we explored the impact of inclusion of the dystrophin CT domain on ΔR4-23/ΔCT MD (MD1), in DMDmdx rats, which allows for relevant evaluations at muscular and cardiac levels. We showed by LC-MS/MS that MD1 expression is sufficient to restore the interactions at a physiological level of most DAPC partners in skeletal and cardiac muscles, and that inclusion of the CT domain increases the recruitment of some DAPC partners at supra-physiological levels. In parallel, we demonstrated that inclusion of the CT domain does not improve MD1 therapeutic efficacy on DMD muscle and cardiac pathologies. Our work highlights new evidences of the therapeutic potential of MD1 and strengthens the relevance of this candidate for gene therapy of DMD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    杜兴氏肌营养不良症(DMD)是一种破坏性的遗传性疾病,会导致细胞膜受损,由缺乏膜结合的肌营养不良蛋白引起。肌膜渗漏导致细胞内稳态破坏,蛋白质降解,肌肉萎缩。改善肌膜完整性可以延缓疾病进展并延长DMD患者的寿命。这里,我们证明了外泌体,膜状细胞外囊泡,可以通过改善肌膜完整性来引起营养不良小鼠的功能改善。来自不同来源的外泌体的全身施用在营养不良小鼠中诱导表型拯救并减轻病理进展而没有可检测的毒性。外泌体赋予的改善的膜完整性抑制了细胞内钙内流和钙蛋白酶的钙依赖性活化,防止不稳定的肌营养不良蛋白相关蛋白复合物的降解。我们证明外泌体,特别是肌管来源的外泌体,通过稳定营养不良小鼠受损的肌膜来诱导功能改善和减轻肌肉退化。我们的发现表明,外泌体可能对DMD和其他膜受损的疾病具有治疗意义。
    Duchenne muscular dystrophy (DMD) is a devastating genetic disorder that leads to compromised cellular membranes, caused by the absence of membrane-bound dystrophin protein. Muscle membrane leakage results in disrupted intracellular homeostasis, protein degradation, and muscle wasting. Improving muscle membrane integrity may delay disease progression and extend the lifespan of DMD patients. Here, we demonstrate that exosomes, membranous extracellular vesicles, can elicit functional improvements in dystrophic mice by improving muscle membrane integrity. Systemic administration of exosomes from different sources induced phenotypic rescue and mitigated pathological progression in dystrophic mice without detectable toxicity. Improved membrane integrity conferred by exosomes inhibited intracellular calcium influx and calcium-dependent activation of calpain proteases, preventing the degradation of the destabilized dystrophin-associated protein complex. We show that exosomes, particularly myotube-derived exosomes, induced functional improvements and alleviated muscle deterioration by stabilizing damaged muscle membrane in dystrophic mice. Our findings suggest that exosomes may have therapeutic implications for DMD and other diseases with compromised membranes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Age-related macular degeneration (AMD) is the leading cause of central vision loss and severe blindness among the elderly population. Recently, we reported on the association of the SGCD gene (encoding for δ-sarcoglycan) polymorphisms with AMD. However, the functional consequence of Sgcd alterations in retinal degeneration is not known. Herein, we characterized changes in the retina of the Sgcd knocked-out mouse (KO, Sgcd-/-). At baseline, we analyzed the retina structure of three-month-old wild-type (WT, Sgcd+/+) and Sgcd-/- mice by hematoxylin and eosin (H&E) staining, assessed the Sgcd-protein complex (α-, β-, γ-, and ε-sarcoglycan, and sarcospan) by immunofluorescence (IF) and Western blot (WB), and performed electroretinography. Compared to the WT, Sgcd-/- mice are five times more likely to have retinal ruptures. Additionally, all the retinal layers are significantly thinner, more so in the inner plexiform layer (IPL). In addition, the number of nuclei in the KO versus the WT is ever so slightly increased. WT mice express Sgcd-protein partners in specific retinal layers, and as expected, KO mice have decreased or no protein expression, with a significant increase in the α subunit. At three months of age, there were no significant differences in the scotopic electroretinographic responses, regarding both a- and b-waves. According to our data, Sgcd-/- has a phenotype that is compatible with retinal degeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Mutation of the gene encoding γ-sarcoglycan (SGCG), an integral membrane protein responsible for maintaining the integrity of the muscle cell sarcolemma, results in Limb-Girdle Muscular Dystrophy (LGMD), a congenital disease with no current treatment options. This member of the sarcoglycan glycoprotein family is a vital component of the Dystrophin Complex, which together facilitate normal muscle function. However, very little is known about the structure and dynamics of these proteins, and of membrane glycoproteins in general. This is due to a number of factors, including their complexity, heterogeneity and highly-specific native environments. The expression, purification, and structural study of membrane proteins is further impeded by their hydrophobic nature and consequent propensity to aggregate in aqueous solutions. Here, we report the first successful expression and purification of milligram quantities of full-length recombinant SGCG, utilizing fusion protein-guided overexpression to inclusion bodies in Escherichia coli. Purification of SGCG from the fusion protein, TrpΔLE, was facilitated using chemical cleavage. Cleavage products were then isolated by size-exclusion chromatography. Successful purification of the protein was confirmed using SDS-PAGE and mass spectroscopy. Finally, solution nuclear magnetic resonance spectroscopy of uniformly 15N-labeled SGCG in detergent environments was performed, yielding the first spectra of the full-length membrane glycoprotein, SGCG. These results represent the initial structural studies of SGCG, laying the foundation for further investigation on the interaction and dynamics of other integral membrane proteins. More specifically, this data allows for opportunities in the future for enhanced treatment modalities and cures for LGMD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号